Distributed-Memory k-mer Counting on GPUs

Israt Nisa, P. Pandey, Marquita Ellis, L. Oliker, A. Buluç, K. Yelick
{"title":"Distributed-Memory k-mer Counting on GPUs","authors":"Israt Nisa, P. Pandey, Marquita Ellis, L. Oliker, A. Buluç, K. Yelick","doi":"10.1109/IPDPS49936.2021.00061","DOIUrl":null,"url":null,"abstract":"A fundamental step in many bioinformatics computations is to count the frequency of fixed-length sequences, called k-mers, a problem that has received considerable attention as an important target for shared memory parallelization. With datasets growing at an exponential rate, distributed memory parallelization is becoming increasingly critical. Existing distributed memory k-mer counters do not take advantage of GPUs for accelerating computations. Additionally, they do not employ domain-specific optimizations to reduce communication volume in a distributed environment. In this paper, we present the first GPU-accelerated distributed-memory parallel k-mer counter. We evaluate the communication volume as the major bottleneck in scaling k-mer counting to multiple GPU-equipped compute nodes and implement a supermer-based optimization to reduce the communication volume and to enhance scalability. Our empirical analysis examines the balance of communication to computation on a state-of-the-art system, the Summit supercomputer at Oak Ridge National Lab. Results show overall speedups of up to two orders of magnitude with GPU optimization over CPU-based k mer counters. Furthermore, we show an additional 1.5$\\times$ speedup using the supermer-based communication optimization.","PeriodicalId":372234,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS49936.2021.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A fundamental step in many bioinformatics computations is to count the frequency of fixed-length sequences, called k-mers, a problem that has received considerable attention as an important target for shared memory parallelization. With datasets growing at an exponential rate, distributed memory parallelization is becoming increasingly critical. Existing distributed memory k-mer counters do not take advantage of GPUs for accelerating computations. Additionally, they do not employ domain-specific optimizations to reduce communication volume in a distributed environment. In this paper, we present the first GPU-accelerated distributed-memory parallel k-mer counter. We evaluate the communication volume as the major bottleneck in scaling k-mer counting to multiple GPU-equipped compute nodes and implement a supermer-based optimization to reduce the communication volume and to enhance scalability. Our empirical analysis examines the balance of communication to computation on a state-of-the-art system, the Summit supercomputer at Oak Ridge National Lab. Results show overall speedups of up to two orders of magnitude with GPU optimization over CPU-based k mer counters. Furthermore, we show an additional 1.5$\times$ speedup using the supermer-based communication optimization.
gpu上的分布式内存k-mer计数
许多生物信息学计算的一个基本步骤是计算固定长度序列的频率,称为k-mers,这个问题作为共享内存并行化的一个重要目标受到了相当大的关注。随着数据集以指数速度增长,分布式内存并行化变得越来越重要。现有的分布式内存k-mer计数器没有利用gpu来加速计算。此外,它们没有使用特定于领域的优化来减少分布式环境中的通信量。在本文中,我们提出了第一个gpu加速分布式内存并行k-mer计数器。我们评估了通信量是将k-mer计数扩展到多个配备gpu的计算节点的主要瓶颈,并实现了基于supermer的优化以减少通信量并增强可扩展性。我们的实证分析在最先进的系统——橡树岭国家实验室的Summit超级计算机上检验了通信与计算的平衡。结果显示,与基于cpu的k计数器相比,GPU优化的总体速度提高了两个数量级。此外,我们还展示了使用基于super的通信优化的额外1.5$\times$加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信