On the incorporation of spatial information to endmember extraction: Survey and algorithm comparison

A. Plaza, G. Martín, M. Zortea
{"title":"On the incorporation of spatial information to endmember extraction: Survey and algorithm comparison","authors":"A. Plaza, G. Martín, M. Zortea","doi":"10.1109/WHISPERS.2009.5289024","DOIUrl":null,"url":null,"abstract":"Several well-known algorithms have been used for endmember extraction and spectral unmixing of hyperspectral imagery by considering only the spectral properties of the data when conducting the search. However, it might be beneficial to incorporate the spatial arrangement of the data in the development of endmember extraction and spectral unmixing algorithms. In this paper, we provide a survey on the use of spatial information in endmember extraction and further compare six different algorithms (three of which only use spectral information) in order to substantiate the impact of using spatial-spectral information versus only spectral information when searching for image endmembers. The comparison is carried out using a synthetic hyperspectral scene with spatial patterns generated using fractals, and a real hyperspectral scene collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS).","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Several well-known algorithms have been used for endmember extraction and spectral unmixing of hyperspectral imagery by considering only the spectral properties of the data when conducting the search. However, it might be beneficial to incorporate the spatial arrangement of the data in the development of endmember extraction and spectral unmixing algorithms. In this paper, we provide a survey on the use of spatial information in endmember extraction and further compare six different algorithms (three of which only use spectral information) in order to substantiate the impact of using spatial-spectral information versus only spectral information when searching for image endmembers. The comparison is carried out using a synthetic hyperspectral scene with spatial patterns generated using fractals, and a real hyperspectral scene collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS).
空间信息在端元提取中的应用:综述与算法比较
在进行搜索时仅考虑数据的光谱特性,已经使用了几种著名的算法来进行高光谱图像的端元提取和光谱分解。然而,在端元提取和光谱解混算法的发展中,考虑数据的空间排列可能是有益的。本文对空间信息在端元提取中的应用进行了综述,并进一步比较了六种不同的算法(其中三种仅使用光谱信息),以证实在搜索图像端元时使用空间光谱信息与仅使用光谱信息的影响。通过使用分形生成空间模式的合成高光谱场景与美国宇航局机载可见红外成像光谱仪(AVIRIS)收集的真实高光谱场景进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信