A Multi-Stage Advanced Deep Learning Graphics Pipeline

Mark Wesley Harris, S. Semwal
{"title":"A Multi-Stage Advanced Deep Learning Graphics Pipeline","authors":"Mark Wesley Harris, S. Semwal","doi":"10.1145/3478512.3488609","DOIUrl":null,"url":null,"abstract":"In this paper we propose the Advanced Deep Learning Graphics Pipeline (ADLGP). ADLGP is a novel approach that uses existing deep learning architectures to convert scene data into rendered images. Our goal of generating frames from semantic data has produced successful renderings with similar structures and composition as target frames. We demonstrate the success of ADLGP with side-by-side comparisons of frames generated through standard rendering procedures. We assert that a fully implemented ADLGP framework would reduce the time spent in visualizing 3D environments, and help selectively offload the requirements of the current graphics rendering pipeline.","PeriodicalId":156290,"journal":{"name":"SIGGRAPH Asia 2021 Technical Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Technical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3478512.3488609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose the Advanced Deep Learning Graphics Pipeline (ADLGP). ADLGP is a novel approach that uses existing deep learning architectures to convert scene data into rendered images. Our goal of generating frames from semantic data has produced successful renderings with similar structures and composition as target frames. We demonstrate the success of ADLGP with side-by-side comparisons of frames generated through standard rendering procedures. We assert that a fully implemented ADLGP framework would reduce the time spent in visualizing 3D environments, and help selectively offload the requirements of the current graphics rendering pipeline.
一个多阶段的高级深度学习图形管道
在本文中我们提出了高级深度学习图形管道(ADLGP)。ADLGP是一种新颖的方法,它使用现有的深度学习架构将场景数据转换为渲染图像。我们从语义数据生成帧的目标已经成功生成了与目标帧具有相似结构和组成的渲染图。我们通过对通过标准渲染过程生成的帧进行并行比较来证明ADLGP的成功。我们断言,一个完全实现的ADLGP框架将减少在可视化3D环境中花费的时间,并有助于有选择地卸载当前图形渲染管道的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信