{"title":"Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem","authors":"H. Lopes, Ronaldo Dias","doi":"10.12660/BRE.V31N12011.4134","DOIUrl":null,"url":null,"abstract":"In this paper we study the effect of model misspecifications for probabilitydensity function estimation. We use a mixture of a parametric and nonparametricdensity estimation. The former can be modeled by any suitable parametricprobability density function, including mixture of parametric models. The latteris given by the known B-spline estimation. The procedure also deals withthe situation when a highly structured data are collected so that it is difficultto propose a parametric model with a large number of mixture components.Then a nonparametric part would help to postulate an appropriate model. Inaddition, in order to reduce the computational cost of getting a nonparametricdensity for high dimensional data a parametric mixture of densities could beused as the starting point for modeling such dataset. Our procedure is computedby using EM-type algorithm for a non-Bayesian approach and MCMCalgorithm under a Bayesian point of view. Simulations and real data analysisshow that our proposed procedure have performed quite well even for nonstructured datasets.","PeriodicalId":332423,"journal":{"name":"Brazilian Review of Econometrics","volume":"86 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/BRE.V31N12011.4134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper we study the effect of model misspecifications for probabilitydensity function estimation. We use a mixture of a parametric and nonparametricdensity estimation. The former can be modeled by any suitable parametricprobability density function, including mixture of parametric models. The latteris given by the known B-spline estimation. The procedure also deals withthe situation when a highly structured data are collected so that it is difficultto propose a parametric model with a large number of mixture components.Then a nonparametric part would help to postulate an appropriate model. Inaddition, in order to reduce the computational cost of getting a nonparametricdensity for high dimensional data a parametric mixture of densities could beused as the starting point for modeling such dataset. Our procedure is computedby using EM-type algorithm for a non-Bayesian approach and MCMCalgorithm under a Bayesian point of view. Simulations and real data analysisshow that our proposed procedure have performed quite well even for nonstructured datasets.