Single-Step Prediction of Chaotic Time Series Using Wavelet-Networks

E. García-Treviño, V. Alarcón-Aquino
{"title":"Single-Step Prediction of Chaotic Time Series Using Wavelet-Networks","authors":"E. García-Treviño, V. Alarcón-Aquino","doi":"10.1109/CERMA.2006.86","DOIUrl":null,"url":null,"abstract":"This paper presents a wavelet neural-network for chaotic time series prediction. Wavelet-networks are inspired by both the feed-forward neural network and the theory underlying wavelet decompositions. Wavelet-networks are a class of neural network that take advantage of good localization properties of multiresolution analysis and combine them with the approximation abilities of neural networks. This kind of networks uses wavelets as activation functions in the hidden layer and a type of backpropagation algorithm is used for its learning. Comparisons are made between a wavelet-network and the typical feedforward network trained with the back-propagation algorithm. The results reported in this paper show that wavelet-networks have better prediction properties than its similar back-propagation networks","PeriodicalId":179210,"journal":{"name":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2006.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper presents a wavelet neural-network for chaotic time series prediction. Wavelet-networks are inspired by both the feed-forward neural network and the theory underlying wavelet decompositions. Wavelet-networks are a class of neural network that take advantage of good localization properties of multiresolution analysis and combine them with the approximation abilities of neural networks. This kind of networks uses wavelets as activation functions in the hidden layer and a type of backpropagation algorithm is used for its learning. Comparisons are made between a wavelet-network and the typical feedforward network trained with the back-propagation algorithm. The results reported in this paper show that wavelet-networks have better prediction properties than its similar back-propagation networks
混沌时间序列的小波网络单步预测
提出了一种用于混沌时间序列预测的小波神经网络。小波网络受到前馈神经网络和小波分解理论的启发。小波网络是一类利用多分辨率分析良好的局部化特性并将其与神经网络的逼近能力相结合的神经网络。这种网络使用小波作为隐藏层的激活函数,并使用一种反向传播算法进行学习。将小波网络与用反向传播算法训练的典型前馈网络进行了比较。结果表明,小波网络比类似的反向传播网络具有更好的预测性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信