MIMO SVMs for classification and regression using the geometric algebra framework

E. Bayro-Corrochano, Nancy Arana-Daniel
{"title":"MIMO SVMs for classification and regression using the geometric algebra framework","authors":"E. Bayro-Corrochano, Nancy Arana-Daniel","doi":"10.1109/IJCNN.2005.1555971","DOIUrl":null,"url":null,"abstract":"This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real- and complex-valued support vector machines using the Clifford geometric algebra. In this framework we handle the design of kernels involving the Clifford or geometric product for linear and nonlinear classification and regression. The major advantage of our approach is that one requires only one CSVM with one kernel (involving the Clifford product) which can admit multiple multivector inputs and it can carry out multi-class classification and regression. In contrast one would need many real valued SVMs for a multi-class problem which is time consuming.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"152 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real- and complex-valued support vector machines using the Clifford geometric algebra. In this framework we handle the design of kernels involving the Clifford or geometric product for linear and nonlinear classification and regression. The major advantage of our approach is that one requires only one CSVM with one kernel (involving the Clifford product) which can admit multiple multivector inputs and it can carry out multi-class classification and regression. In contrast one would need many real valued SVMs for a multi-class problem which is time consuming.
MIMO支持向量机的分类和回归使用几何代数框架
本文介绍了利用Clifford几何代数对实值和复值支持向量机进行推广的Clifford支持向量机(CSVM)。在这个框架中,我们处理涉及Clifford或几何积的核的设计,用于线性和非线性分类和回归。我们的方法的主要优点是只需要一个带有一个内核(涉及Clifford积)的CSVM,它可以接受多个多向量输入,并且可以进行多类分类和回归。相反,对于一个耗时的多类问题,需要许多实值支持向量机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信