D. Malyutin, O. Grachev, A. V. Bekmachev, A. Puchkov, Ya.N. Smyshlyaev, I. Oparin
{"title":"Integration of geomechanical and seismic data for losses predictions while drilling horizontal wells","authors":"D. Malyutin, O. Grachev, A. V. Bekmachev, A. Puchkov, Ya.N. Smyshlyaev, I. Oparin","doi":"10.3997/2214-4609.202154027","DOIUrl":null,"url":null,"abstract":"Summary This thesis presents the technology for assessing the risks of mud losses during drilling using 1D geomechanical modeling in conjunction with the seismic interpretation data MOGT-3D. Based on a combination of seismic and geomechanical data, a methodology has been developed for estimating the equivalent circulating density values, above which the mud losses will appear during drilling, which makes it possible to predict drilling risks and provide measures to prevent them without increasing the cost of drilling. In the examples considered, the forecast of mud losses by this method has a 72% confirmation (21 out of 29 wells). In order to further improve the technique, a number of measures have been proposed, including, conducting special methods of geophysical well logging to determine the nature of zones with increased mud loss risks and clarifying the direction of maximum horizontal stress, as well as performing leak-off tests (LOT and XLOT) for estimations of mud loss and hydraulic fracture pressures. The seismic-geomechanical model constructed according to the proposed method can be used to solve other equally important tasks: search for zones of increased reservoir properties, the location of the ports of multistage hydraulic fracturing, risk assessment of increased wear of bits and others.","PeriodicalId":105144,"journal":{"name":"Horizontal Wells 2021","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horizontal Wells 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202154027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary This thesis presents the technology for assessing the risks of mud losses during drilling using 1D geomechanical modeling in conjunction with the seismic interpretation data MOGT-3D. Based on a combination of seismic and geomechanical data, a methodology has been developed for estimating the equivalent circulating density values, above which the mud losses will appear during drilling, which makes it possible to predict drilling risks and provide measures to prevent them without increasing the cost of drilling. In the examples considered, the forecast of mud losses by this method has a 72% confirmation (21 out of 29 wells). In order to further improve the technique, a number of measures have been proposed, including, conducting special methods of geophysical well logging to determine the nature of zones with increased mud loss risks and clarifying the direction of maximum horizontal stress, as well as performing leak-off tests (LOT and XLOT) for estimations of mud loss and hydraulic fracture pressures. The seismic-geomechanical model constructed according to the proposed method can be used to solve other equally important tasks: search for zones of increased reservoir properties, the location of the ports of multistage hydraulic fracturing, risk assessment of increased wear of bits and others.