{"title":"Denoising of hyperspectral imagery using a spatial-spectral domain mixing prior","authors":"Shaolin Chen, Xiyuan Hu, Silong Peng","doi":"10.1109/Geoinformatics.2012.6270354","DOIUrl":null,"url":null,"abstract":"By introducing a novel spatial-spectral domain mixing prior, this paper establishes a maximum a posterior (MAP) framework for hyperspectral images (HSIs) denoising. The proposed mixing prior takes advantage of different properties of HSI in the spatial and spectral domain. Furthermore, we proposed a spatially adaptive weighted prior combining smoothing prior and discontinuity-preserving prior in the spectral domain. The weights can be defined as a function of the spectral discontinuity measure (DM). For minimizing the objective function, a half-quadratic optimization algorithm is used. The experimental results illustrate that our proposed model can get a higher signal-to-noise ratio (SNR) than using only smoothing prior or discontinuity-preserving prior.","PeriodicalId":259976,"journal":{"name":"2012 20th International Conference on Geoinformatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Geoinformatics.2012.6270354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
By introducing a novel spatial-spectral domain mixing prior, this paper establishes a maximum a posterior (MAP) framework for hyperspectral images (HSIs) denoising. The proposed mixing prior takes advantage of different properties of HSI in the spatial and spectral domain. Furthermore, we proposed a spatially adaptive weighted prior combining smoothing prior and discontinuity-preserving prior in the spectral domain. The weights can be defined as a function of the spectral discontinuity measure (DM). For minimizing the objective function, a half-quadratic optimization algorithm is used. The experimental results illustrate that our proposed model can get a higher signal-to-noise ratio (SNR) than using only smoothing prior or discontinuity-preserving prior.