Thermal infrared object tracking via Siamese convolutional neural networks

Qiao Liu, Di Yuan, Zhenyu He
{"title":"Thermal infrared object tracking via Siamese convolutional neural networks","authors":"Qiao Liu, Di Yuan, Zhenyu He","doi":"10.1109/SPAC.2017.8304241","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel thermal infrared (TIR) tracker via a deep Siamese convolutional neural network (CNN), named Siamesetir. Different from the most existing discriminative TIR tracking methods which treat the tracking problem as a classification problem, we treat the TIR tracking problem as a similarity verification problem. Specifically, we design a novel Siamese convolutional neural network which coalesces the multiple convolution layers to obtain richer information for tracking. Then, we train this network end to end on a large video detection dataset to learn the similarity of two arbitrary objects. Next, this pre-trained Siamese network is regarded as a similarity function simply used to evaluate the similarity between the initial target and candidates. Finally, we locate the most similar one without any adapting in the tracking process. To evaluate the performance of our TIR tracker, we conduct the experiments on the TIR tracking benchmark VOT-TIR2016. The experimental results show that the proposed method achieves very competitive performance.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a novel thermal infrared (TIR) tracker via a deep Siamese convolutional neural network (CNN), named Siamesetir. Different from the most existing discriminative TIR tracking methods which treat the tracking problem as a classification problem, we treat the TIR tracking problem as a similarity verification problem. Specifically, we design a novel Siamese convolutional neural network which coalesces the multiple convolution layers to obtain richer information for tracking. Then, we train this network end to end on a large video detection dataset to learn the similarity of two arbitrary objects. Next, this pre-trained Siamese network is regarded as a similarity function simply used to evaluate the similarity between the initial target and candidates. Finally, we locate the most similar one without any adapting in the tracking process. To evaluate the performance of our TIR tracker, we conduct the experiments on the TIR tracking benchmark VOT-TIR2016. The experimental results show that the proposed method achieves very competitive performance.
基于暹罗卷积神经网络的热红外目标跟踪
在本文中,我们提出了一种基于深度连体卷积神经网络(CNN)的新型热红外(TIR)跟踪器,命名为Siamesetir。与现有的判别式TIR跟踪方法将跟踪问题视为分类问题不同,我们将TIR跟踪问题视为相似度验证问题。具体来说,我们设计了一种新的Siamese卷积神经网络,该网络将多个卷积层合并在一起,以获得更丰富的跟踪信息。然后,我们在一个大型视频检测数据集上对该网络进行端到端训练,以学习任意两个对象的相似性。接下来,这个预训练的暹罗网络被视为一个简单的相似性函数,用于评估初始目标和候选对象之间的相似性。最后,我们在跟踪过程中不做任何调整,定位出最相似的点。为了评估我们的TIR跟踪器的性能,我们在TIR跟踪基准VOT-TIR2016上进行了实验。实验结果表明,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信