Model predictive control for perturbed max-plus-linear systems: a stochastic approach

T. Boom, B. Schutter
{"title":"Model predictive control for perturbed max-plus-linear systems: a stochastic approach","authors":"T. Boom, B. Schutter","doi":"10.1109/CDC.2001.980918","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Previously, we (2001) have extended MPC to a class of discrete event systems that can be described by a model that is \"linear\" in the (max, +) algebra. In our previous work we have only considered MPC for the perturbations-free case and for the case with bounded noise and/or modeling errors. We extend our previous results on MPC for perturbed max-plus-linear systems to a stochastic setting. We show that under quite general conditions the resulting optimization problems turn out to be convex and can be solved very efficiently.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Previously, we (2001) have extended MPC to a class of discrete event systems that can be described by a model that is "linear" in the (max, +) algebra. In our previous work we have only considered MPC for the perturbations-free case and for the case with bounded noise and/or modeling errors. We extend our previous results on MPC for perturbed max-plus-linear systems to a stochastic setting. We show that under quite general conditions the resulting optimization problems turn out to be convex and can be solved very efficiently.
扰动最大加线性系统的模型预测控制:一种随机方法
模型预测控制(MPC)是过程工业中一种流行的控制器设计技术。传统的MPC使用线性或非线性离散时间模型。以前,我们(2001)已经将MPC扩展到一类离散事件系统,这些系统可以用(max, +)代数中的“线性”模型来描述。在我们以前的工作中,我们只考虑了无扰动情况和有界噪声和/或建模误差情况下的MPC。我们将先前关于扰动最大加线性系统的MPC的结果推广到随机设置。我们证明,在相当一般的条件下,所得到的优化问题是凸的,可以非常有效地解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信