Developing in vitro models of the sub-retinal microenvironment

Elizabeth Vargis, C. Foster, Cristen B. Peterson, J. Morrell-Falvey, S. Retterer, C. Collier
{"title":"Developing in vitro models of the sub-retinal microenvironment","authors":"Elizabeth Vargis, C. Foster, Cristen B. Peterson, J. Morrell-Falvey, S. Retterer, C. Collier","doi":"10.1109/BSEC.2013.6618483","DOIUrl":null,"url":null,"abstract":"Physiologically-relevant in vitro models of retinal disease are necessary for understanding the complex interactions of oxidative stress, molecular signaling and physical contact between cells and their local environment. In this study, microfluidic devices and microcontact printing are used to mimic in vivo conditions of the sub-retinal microenvironment and the effects of oxidative stress and atrophy on protein expression by retinal pigment epithelial cells. The results demonstrate that differences in RNA and protein expression due to oxidative stress and loss of function can be observed from cells within microfluidic devices and in micropatterned patches. These findings indicate that nano- and microstructured materials can be used to interrogate normal and malignant retinal cell growth.","PeriodicalId":431045,"journal":{"name":"2013 Biomedical Sciences and Engineering Conference (BSEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Biomedical Sciences and Engineering Conference (BSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSEC.2013.6618483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physiologically-relevant in vitro models of retinal disease are necessary for understanding the complex interactions of oxidative stress, molecular signaling and physical contact between cells and their local environment. In this study, microfluidic devices and microcontact printing are used to mimic in vivo conditions of the sub-retinal microenvironment and the effects of oxidative stress and atrophy on protein expression by retinal pigment epithelial cells. The results demonstrate that differences in RNA and protein expression due to oxidative stress and loss of function can be observed from cells within microfluidic devices and in micropatterned patches. These findings indicate that nano- and microstructured materials can be used to interrogate normal and malignant retinal cell growth.
视网膜下微环境体外模型的建立
生理相关的视网膜疾病体外模型对于理解氧化应激、分子信号和细胞与局部环境之间的物理接触的复杂相互作用是必要的。本研究利用微流体装置和微接触打印模拟视网膜下微环境的体内条件,以及氧化应激和萎缩对视网膜色素上皮细胞蛋白表达的影响。结果表明,氧化应激和功能丧失导致的RNA和蛋白质表达差异可以从微流控装置和微图案贴片内的细胞中观察到。这些发现表明,纳米和微结构材料可以用来询问正常和恶性视网膜细胞的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信