{"title":"Aplicação da mineração de dados à análise das condições de operação de transformadores.","authors":"L. Castanheira","doi":"10.18407/ISSN.1983-9952.2009.V2.N1.P012-023","DOIUrl":null,"url":null,"abstract":"O processo de descoberta de conhecimento em bases de dados (Knowledge Discovery in Databases - KDD) vem sendo amplamente utilizado como ferramenta para auxiliar a tomada de decisão. Neste trabalho, esse processo é estudado tendo como objetivo avaliar a utilização de métodos de mineração de dados aplicados em áreas da Engenharia Elétrica, sendo a sua abordagem sobre uma base de dados oriunda de testes de cromatografia de transformadores de potência. A mineração de dados é aplicada para obter a classificação de tipos de defeitos dos transformadores. As técnicas abordadas são redes neurais e árvores de decisão. As estruturas de algoritmos escolhidas nessas técnicas foram, respectivamente, a rede MLP com treinamento através do algoritmo de retropropagação resiliente e a árvore gerada pelo algoritmo J4.8, simulada no aplicativo weka. O melhor resultado foi com a utilização da árvore de decisão, em que foram conseguidos resultados com acerto entre 75 e 90%. Através dos resultados, viu-se que o processo de mineração de dados pode ser aplicado em problemas na área da Engenharia Elétrica. Entretanto, devem ser feitos estudos sobre o domínio de cada base de dados a ser tratada.","PeriodicalId":106592,"journal":{"name":"REVISTA PRODUÇÃO E ENGENHARIA","volume":"25 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"REVISTA PRODUÇÃO E ENGENHARIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18407/ISSN.1983-9952.2009.V2.N1.P012-023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
O processo de descoberta de conhecimento em bases de dados (Knowledge Discovery in Databases - KDD) vem sendo amplamente utilizado como ferramenta para auxiliar a tomada de decisão. Neste trabalho, esse processo é estudado tendo como objetivo avaliar a utilização de métodos de mineração de dados aplicados em áreas da Engenharia Elétrica, sendo a sua abordagem sobre uma base de dados oriunda de testes de cromatografia de transformadores de potência. A mineração de dados é aplicada para obter a classificação de tipos de defeitos dos transformadores. As técnicas abordadas são redes neurais e árvores de decisão. As estruturas de algoritmos escolhidas nessas técnicas foram, respectivamente, a rede MLP com treinamento através do algoritmo de retropropagação resiliente e a árvore gerada pelo algoritmo J4.8, simulada no aplicativo weka. O melhor resultado foi com a utilização da árvore de decisão, em que foram conseguidos resultados com acerto entre 75 e 90%. Através dos resultados, viu-se que o processo de mineração de dados pode ser aplicado em problemas na área da Engenharia Elétrica. Entretanto, devem ser feitos estudos sobre o domínio de cada base de dados a ser tratada.