Sparse selective kernelized correlation filter model for visual object tracking

Xiaohuan Lu, Di Yuan, Zhenyu He, Donghao Li
{"title":"Sparse selective kernelized correlation filter model for visual object tracking","authors":"Xiaohuan Lu, Di Yuan, Zhenyu He, Donghao Li","doi":"10.1109/SPAC.2017.8304258","DOIUrl":null,"url":null,"abstract":"Robust visual object tracking is one of the most challenging issues in the field of computer vision. Because of the circular shifts strategy, correlation filter-based trackers show a great efficiency in tracking task and thus receive lots of attentions. However, most of the correlation filter-based trackers fix the scale of the targets in each frame and use single template to update the filters, which makes the trackers unreliable in the tracking task. In this paper, we intend to promote the robustness of the kernelized correlation filters (KCF) in the tracking task, through a fast scale pyramid solution to solve the scale variations problems. Furthermore, we introduce a sparse model selection scheme on template sets to solve the problem of contaminated templates in single template methods. We test our method on OTB-2013 dataset and the experimental results show the robustness of our method. The proposed tracker achieves promising performance both in terms of accuracy and speed comparing with the state-of-the-art trackers.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Robust visual object tracking is one of the most challenging issues in the field of computer vision. Because of the circular shifts strategy, correlation filter-based trackers show a great efficiency in tracking task and thus receive lots of attentions. However, most of the correlation filter-based trackers fix the scale of the targets in each frame and use single template to update the filters, which makes the trackers unreliable in the tracking task. In this paper, we intend to promote the robustness of the kernelized correlation filters (KCF) in the tracking task, through a fast scale pyramid solution to solve the scale variations problems. Furthermore, we introduce a sparse model selection scheme on template sets to solve the problem of contaminated templates in single template methods. We test our method on OTB-2013 dataset and the experimental results show the robustness of our method. The proposed tracker achieves promising performance both in terms of accuracy and speed comparing with the state-of-the-art trackers.
视觉目标跟踪的稀疏选择核化相关滤波模型
鲁棒视觉目标跟踪是计算机视觉领域最具挑战性的问题之一。由于采用了循环移位策略,基于相关滤波器的跟踪器在跟踪任务中表现出了很高的效率,因此受到了广泛的关注。然而,大多数基于相关滤波器的跟踪器在每一帧中固定目标的尺度,并且使用单一模板更新滤波器,这使得跟踪器在跟踪任务中不可靠。在本文中,我们打算通过一个快速的规模金字塔解来解决规模变化问题,以提高核化相关滤波器(KCF)在跟踪任务中的鲁棒性。在此基础上,提出了一种基于模板集的稀疏模型选择方案,解决了单模板方法中存在的模板污染问题。在OTB-2013数据集上对该方法进行了测试,实验结果表明了该方法的鲁棒性。与最先进的跟踪器相比,所提出的跟踪器在精度和速度方面都取得了令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信