Modeling Information Scent: A Comparison of LSA, PMI and GLSA Similarity Measures on Common Tests and Corpora

R. Budiu, Christiaan Royer, P. Pirolli
{"title":"Modeling Information Scent: A Comparison of LSA, PMI and GLSA Similarity Measures on Common Tests and Corpora","authors":"R. Budiu, Christiaan Royer, P. Pirolli","doi":"10.5555/1931390.1931422","DOIUrl":null,"url":null,"abstract":"In this paper we describe a comparison among three systems that estimate semantic similarity between words: Latent Semantic Analysis (Landauer & Dumais, 1997), Pointwise Mutual Information (Turney, 2001), and Generalized Latent Semantic Analysis (Matveeva, Levow, Farahat, & Royer, 2005). We compare all these techniques on a unique corpus (TASA) and, for PMI and GLSA, we also report performance on a larger web-based corpus. The evaluation is carried out through two kinds of tests: (1) synonymy tests, and (2) comparison with human word similarity judgments. The results indicate that for large corpora PMI works best on word similarity tests, and GLSA on synonymy tests. For the smaller TASA corpus, GLSA produced the best performance on most tests. A large corpus improved the performance of PMI, but, in most cases, did not improve that of GLSA.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1931390.1931422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

In this paper we describe a comparison among three systems that estimate semantic similarity between words: Latent Semantic Analysis (Landauer & Dumais, 1997), Pointwise Mutual Information (Turney, 2001), and Generalized Latent Semantic Analysis (Matveeva, Levow, Farahat, & Royer, 2005). We compare all these techniques on a unique corpus (TASA) and, for PMI and GLSA, we also report performance on a larger web-based corpus. The evaluation is carried out through two kinds of tests: (1) synonymy tests, and (2) comparison with human word similarity judgments. The results indicate that for large corpora PMI works best on word similarity tests, and GLSA on synonymy tests. For the smaller TASA corpus, GLSA produced the best performance on most tests. A large corpus improved the performance of PMI, but, in most cases, did not improve that of GLSA.
信息气味建模:通用测试和语料库上LSA、PMI和GLSA相似度量的比较
在本文中,我们描述了三个估计单词之间语义相似性的系统之间的比较:潜在语义分析(Landauer & Dumais, 1997),点互信息(Turney, 2001)和广义潜在语义分析(Matveeva, Levow, Farahat, & Royer, 2005)。我们在一个独特的语料库(TASA)上比较了所有这些技术,对于PMI和GLSA,我们还报告了在一个更大的基于web的语料库上的性能。通过两种测试进行评价:(1)同义词测试,(2)与人类单词相似度判断的比较。结果表明,对于大型语料库,PMI在词相似度测试中效果最好,GLSA在同义词测试中效果最好。对于较小的TASA语料库,GLSA在大多数测试中产生了最佳性能。大型语料库提高了PMI的性能,但在大多数情况下,并没有提高GLSA的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信