{"title":"Defining and Supporting Narrative-driven Recommendation","authors":"Toine Bogers, M. Koolen","doi":"10.1145/3109859.3109893","DOIUrl":null,"url":null,"abstract":"Research into recommendation algorithms has made great strides in recent years. However, these algorithms are typically applied in relatively straightforward scenarios: given information about a user's past preferences, what will they like in the future? Recommendation is often more complex: evaluating recommended items never takes place in a vacuum, and it is often a single step in the user's more complex background task. In this paper, we define a specific type of recommendation scenario called narrative-driven recommendation, where the recommendation process is driven by both a log of the user's past transactions as well as a narrative description of their current interest(s). Through an analysis of a set of real-world recommendation narratives from the LibraryThing forums, we demonstrate the uniqueness and richness of this scenario and highlight common patterns and properties of such narratives.","PeriodicalId":417173,"journal":{"name":"Proceedings of the Eleventh ACM Conference on Recommender Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3109859.3109893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Research into recommendation algorithms has made great strides in recent years. However, these algorithms are typically applied in relatively straightforward scenarios: given information about a user's past preferences, what will they like in the future? Recommendation is often more complex: evaluating recommended items never takes place in a vacuum, and it is often a single step in the user's more complex background task. In this paper, we define a specific type of recommendation scenario called narrative-driven recommendation, where the recommendation process is driven by both a log of the user's past transactions as well as a narrative description of their current interest(s). Through an analysis of a set of real-world recommendation narratives from the LibraryThing forums, we demonstrate the uniqueness and richness of this scenario and highlight common patterns and properties of such narratives.