{"title":"Separating Examination and Trust Bias from Click Predictions for Unbiased Relevance Ranking","authors":"Haiyuan Zhao, Jun Xu, Xiao Zhang, Guohao Cai, Zhenhua Dong, Jirong Wen","doi":"10.1145/3539597.3570393","DOIUrl":null,"url":null,"abstract":"Alleviating the examination and trust bias in ranking systems is an important research line in unbiased learning-to-rank (ULTR). Current methods typically use the propensity to correct the biased user clicks and then learn ranking models based on the corrected clicks. Though successes have been achieved, directly modifying the clicks suffers from the inherent high variance because the propensities are usually involved in the denominators of corrected clicks. The problem gets even worse in the situation of mixed examination and trust bias. To address the issue, this paper proposes a novel ULTR method called Decomposed Ranking Debiasing (DRD). DRD is tailored for learning unbiased relevance models with low variance in the existence of examination and trust bias. Unlike existing methods that directly modify the original user clicks, DRD proposes to decompose each click prediction as the combination of a relevance term outputted by the ranking model and other bias terms. The unbiased relevance model, therefore, can be learned by fitting the overall click predictions to the biased user clicks. A joint learning algorithm is developed to learn the relevance and bias models' parameters alternatively. Theoretical analysis showed that, compared with existing methods, DRD has lower variance while retains unbiasedness. Empirical studies indicated that DRD can effectively reduce the variance and outperform the state-of-the-art ULTR baselines.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3570393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Alleviating the examination and trust bias in ranking systems is an important research line in unbiased learning-to-rank (ULTR). Current methods typically use the propensity to correct the biased user clicks and then learn ranking models based on the corrected clicks. Though successes have been achieved, directly modifying the clicks suffers from the inherent high variance because the propensities are usually involved in the denominators of corrected clicks. The problem gets even worse in the situation of mixed examination and trust bias. To address the issue, this paper proposes a novel ULTR method called Decomposed Ranking Debiasing (DRD). DRD is tailored for learning unbiased relevance models with low variance in the existence of examination and trust bias. Unlike existing methods that directly modify the original user clicks, DRD proposes to decompose each click prediction as the combination of a relevance term outputted by the ranking model and other bias terms. The unbiased relevance model, therefore, can be learned by fitting the overall click predictions to the biased user clicks. A joint learning algorithm is developed to learn the relevance and bias models' parameters alternatively. Theoretical analysis showed that, compared with existing methods, DRD has lower variance while retains unbiasedness. Empirical studies indicated that DRD can effectively reduce the variance and outperform the state-of-the-art ULTR baselines.