J. Candy, D. Chambers, E. Breitfeller, B. Guidry, J. Verbeke, M. Axelrod, K. Sale, A. Meyer
{"title":"Radioactive threat detection with scattering physics: A model-based application","authors":"J. Candy, D. Chambers, E. Breitfeller, B. Guidry, J. Verbeke, M. Axelrod, K. Sale, A. Meyer","doi":"10.1109/CIP.2010.5604145","DOIUrl":null,"url":null,"abstract":"The detection of radioactive contraband is a critical problem in maintaining national security for any country. Emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. The development of a model-based sequential Bayesian processor that captures both the underlying transport physics including scattering offers a physics-based approach to attack this challenging problem. It is shown that this processor can be used to develop an effective detection technique.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The detection of radioactive contraband is a critical problem in maintaining national security for any country. Emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. The development of a model-based sequential Bayesian processor that captures both the underlying transport physics including scattering offers a physics-based approach to attack this challenging problem. It is shown that this processor can be used to develop an effective detection technique.