LFQ: Online Learning of Per-flow Queuing Policies using Deep Reinforcement Learning

Maximilian Bachl, J. Fabini, T. Zseby
{"title":"LFQ: Online Learning of Per-flow Queuing Policies using Deep Reinforcement Learning","authors":"Maximilian Bachl, J. Fabini, T. Zseby","doi":"10.1109/LCN48667.2020.9314771","DOIUrl":null,"url":null,"abstract":"The increasing number of different, incompatible congestion control algorithms has led to an increased deployment of fair queuing. Fair queuing isolates each network flow and can thus guarantee fairness for each flow even if the flows’ congestion controls are not inherently fair. So far, each queue in the fair queuing system either has a fixed, static maximum size or is managed by an Active Queue Management (AQM) algorithm like CoDel. In this paper we design an AQM mechanism (Learning Fair Qdisc (LFQ)) that dynamically learns the optimal buffer size for each flow according to a specified reward function online. We show that our Deep Learning based algorithm can dynamically assign the optimal queue size to each flow depending on its congestion control, delay and bandwidth. Comparing to competing fair AQM schedulers, it provides significantly smaller queues while achieving the same or higher throughput.","PeriodicalId":245782,"journal":{"name":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN48667.2020.9314771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The increasing number of different, incompatible congestion control algorithms has led to an increased deployment of fair queuing. Fair queuing isolates each network flow and can thus guarantee fairness for each flow even if the flows’ congestion controls are not inherently fair. So far, each queue in the fair queuing system either has a fixed, static maximum size or is managed by an Active Queue Management (AQM) algorithm like CoDel. In this paper we design an AQM mechanism (Learning Fair Qdisc (LFQ)) that dynamically learns the optimal buffer size for each flow according to a specified reward function online. We show that our Deep Learning based algorithm can dynamically assign the optimal queue size to each flow depending on its congestion control, delay and bandwidth. Comparing to competing fair AQM schedulers, it provides significantly smaller queues while achieving the same or higher throughput.
LFQ:使用深度强化学习的每流排队策略在线学习
越来越多的不同的、不兼容的拥塞控制算法导致公平排队的部署增加。公平排队隔离了每个网络流,因此即使流的拥塞控制本身不公平,也可以保证每个流的公平性。到目前为止,公平排队系统中的每个队列要么具有固定的静态最大大小,要么由CoDel等活动队列管理(AQM)算法管理。本文设计了一种AQM机制(Learning Fair Qdisc, LFQ),它根据给定的奖励函数在线动态学习每个流的最优缓冲区大小。我们展示了我们基于深度学习的算法可以根据其拥塞控制、延迟和带宽动态地为每个流分配最佳队列大小。与竞争的公平AQM调度器相比,它提供了更小的队列,同时实现了相同或更高的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信