{"title":"Deep-Learning-based Vulnerability Detection in Binary Executables","authors":"A. Schaad, Dominik Binder","doi":"10.48550/arXiv.2212.01254","DOIUrl":null,"url":null,"abstract":"The identification of vulnerabilities is an important element in the software development life cycle to ensure the security of software. While vulnerability identification based on the source code is a well studied field, the identification of vulnerabilities on basis of a binary executable without the corresponding source code is more challenging. Recent research [1] has shown, how such detection can be achieved by deep learning methods. However, that particular approach is limited to the identification of only 4 types of vulnerabilities. Subsequently, we analyze to what extent we could cover the identification of a larger variety of vulnerabilities. Therefore, a supervised deep learning approach using recurrent neural networks for the application of vulnerability detection based on binary executables is used. The underlying basis is a dataset with 50,651 samples of vulnerable code in the form of a standardized LLVM Intermediate Representation. The vectorised features of a Word2Vec model are used to train different variations of three basic architectures of recurrent neural networks (GRU, LSTM, SRNN). A binary classification was established for detecting the presence of an arbitrary vulnerability, and a multi-class model was trained for the identification of the exact vulnerability, which achieved an out-of-sample accuracy of 88% and 77%, respectively. Differences in the detection of different vulnerabilities were also observed, with non-vulnerable samples being detected with a particularly high precision of over 98%. Thus, the methodology presented allows an accurate detection of 23 (compared to 4 [1]) vulnerabilities.","PeriodicalId":337718,"journal":{"name":"Foundations and Practice of Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Practice of Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.01254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The identification of vulnerabilities is an important element in the software development life cycle to ensure the security of software. While vulnerability identification based on the source code is a well studied field, the identification of vulnerabilities on basis of a binary executable without the corresponding source code is more challenging. Recent research [1] has shown, how such detection can be achieved by deep learning methods. However, that particular approach is limited to the identification of only 4 types of vulnerabilities. Subsequently, we analyze to what extent we could cover the identification of a larger variety of vulnerabilities. Therefore, a supervised deep learning approach using recurrent neural networks for the application of vulnerability detection based on binary executables is used. The underlying basis is a dataset with 50,651 samples of vulnerable code in the form of a standardized LLVM Intermediate Representation. The vectorised features of a Word2Vec model are used to train different variations of three basic architectures of recurrent neural networks (GRU, LSTM, SRNN). A binary classification was established for detecting the presence of an arbitrary vulnerability, and a multi-class model was trained for the identification of the exact vulnerability, which achieved an out-of-sample accuracy of 88% and 77%, respectively. Differences in the detection of different vulnerabilities were also observed, with non-vulnerable samples being detected with a particularly high precision of over 98%. Thus, the methodology presented allows an accurate detection of 23 (compared to 4 [1]) vulnerabilities.