CrowdSource: Automated inference of high level malware functionality from low-level symbols using a crowd trained machine learning model

Joshua Saxe, R. Turner, K. Blokhin
{"title":"CrowdSource: Automated inference of high level malware functionality from low-level symbols using a crowd trained machine learning model","authors":"Joshua Saxe, R. Turner, K. Blokhin","doi":"10.1109/MALWARE.2014.6999417","DOIUrl":null,"url":null,"abstract":"In this paper we introduce CrowdSource, a statistical natural language processing system designed to make rapid inferences about malware functionality based on printable character strings extracted from malware binaries. CrowdSource “learns” a mapping between low-level language and high-level software functionality by leveraging millions of web technical documents from StackExchange, a popular network of technical question and answer sites, using this mapping to infer malware capabilities. This paper describes our approach and provides an evaluation of its accuracy and performance, demonstrating that it can detect at least 14 high-level malware capabilities in unpacked malware binaries with an average per-capability f-score of 0.86 and at a rate of tens of thousands of binaries per day on commodity hardware.","PeriodicalId":151942,"journal":{"name":"2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MALWARE.2014.6999417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper we introduce CrowdSource, a statistical natural language processing system designed to make rapid inferences about malware functionality based on printable character strings extracted from malware binaries. CrowdSource “learns” a mapping between low-level language and high-level software functionality by leveraging millions of web technical documents from StackExchange, a popular network of technical question and answer sites, using this mapping to infer malware capabilities. This paper describes our approach and provides an evaluation of its accuracy and performance, demonstrating that it can detect at least 14 high-level malware capabilities in unpacked malware binaries with an average per-capability f-score of 0.86 and at a rate of tens of thousands of binaries per day on commodity hardware.
CrowdSource:使用大众训练的机器学习模型从低级符号自动推断高级恶意软件功能
在本文中,我们介绍了CrowdSource,一个统计自然语言处理系统,旨在根据从恶意软件二进制文件中提取的可打印字符串快速推断恶意软件的功能。CrowdSource通过利用来自StackExchange(一个流行的技术问答网站)的数百万网络技术文档,“学习”低级语言和高级软件功能之间的映射,并使用这种映射来推断恶意软件的能力。本文描述了我们的方法,并提供了对其准确性和性能的评估,证明它可以在未打包的恶意软件二进制文件中检测到至少14种高级恶意软件功能,平均每功能f分数为0.86,并且在商品硬件上以每天数万个二进制文件的速度检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信