A privacy-preserving crowd movement analysis by k-member clustering of face images

Katsuhiro Honda, Masahiro Omori, S. Ubukata, A. Notsu
{"title":"A privacy-preserving crowd movement analysis by k-member clustering of face images","authors":"Katsuhiro Honda, Masahiro Omori, S. Ubukata, A. Notsu","doi":"10.1109/ICIEV.2015.7334056","DOIUrl":null,"url":null,"abstract":"Crowd movement analysis is an important issue in social design. This paper studies an machine learning approach to crowd movement estimation through face image recognition. Although high performance face recognition is a powerful tool in individual authentication with surveillance camera images in public spaces, utilization of personal information is often hesitated under fear of privacy violation. In this paper, a privacy preserving framework for crowd movement analysis is proposed considering k-anonymization of face image features. k-anonymity is a quantitative measure of secureness in data mining and is expected to enhance the utility of personal information. An experimental result demonstrates the applicability of the secure framework in capturing crowd movement characteristics even if individual features are k-aonymized so that each individual is not distinguishable from others k - 1 ones.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Crowd movement analysis is an important issue in social design. This paper studies an machine learning approach to crowd movement estimation through face image recognition. Although high performance face recognition is a powerful tool in individual authentication with surveillance camera images in public spaces, utilization of personal information is often hesitated under fear of privacy violation. In this paper, a privacy preserving framework for crowd movement analysis is proposed considering k-anonymization of face image features. k-anonymity is a quantitative measure of secureness in data mining and is expected to enhance the utility of personal information. An experimental result demonstrates the applicability of the secure framework in capturing crowd movement characteristics even if individual features are k-aonymized so that each individual is not distinguishable from others k - 1 ones.
基于k-成员聚类的人脸图像隐私保护人群运动分析
人群运动分析是社会设计中的一个重要问题。本文研究了一种基于人脸图像识别的人群运动估计的机器学习方法。尽管高性能人脸识别是公共场所监控摄像头图像中个人身份验证的有力工具,但由于担心侵犯隐私,个人信息的使用往往是犹豫的。本文提出了一种考虑人脸图像特征k匿名化的人群运动分析隐私保护框架。k-匿名是数据挖掘中安全性的定量度量,有望提高个人信息的效用。实验结果证明了安全框架在捕获人群运动特征方面的适用性,即使个体特征被k-匿名化,以便每个个体与其他k- 1个个体无法区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信