INDOOR LOCATION ESTIMATION BASED ON TOA DATA AND BIAS ESTIMATION USING GAMMA REGRESSION

Atsushi Yoshida, T. Sakumura, T. Kamakura
{"title":"INDOOR LOCATION ESTIMATION BASED ON TOA DATA AND BIAS ESTIMATION USING GAMMA REGRESSION","authors":"Atsushi Yoshida, T. Sakumura, T. Kamakura","doi":"10.5183/JJSCS.1605001_231","DOIUrl":null,"url":null,"abstract":"We aim at improving the accuracy of indoor position estimation through a statistical approach. In this study, we propose a position estimation method based on Time-of-Arrival (ToA). ToA data are often useful. However, ToA data include a positive bias due to the reflection of radio waves. Therefore, it is difficult to estimate the TAG position from ToA data directly without an accurate bias correction. In this paper, we propose a maximum likelihood estimation method for the TAG position using gamma regression and a rotated distribution, and we show that the estimation with bias correction is more accurate than the estimation without bias correction. In addition, we show that our method also provides a confidence region for the TAG position.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1605001_231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We aim at improving the accuracy of indoor position estimation through a statistical approach. In this study, we propose a position estimation method based on Time-of-Arrival (ToA). ToA data are often useful. However, ToA data include a positive bias due to the reflection of radio waves. Therefore, it is difficult to estimate the TAG position from ToA data directly without an accurate bias correction. In this paper, we propose a maximum likelihood estimation method for the TAG position using gamma regression and a rotated distribution, and we show that the estimation with bias correction is more accurate than the estimation without bias correction. In addition, we show that our method also provides a confidence region for the TAG position.
基于toa数据的室内位置估计和使用伽玛回归的偏差估计
我们的目的是通过统计方法提高室内位置估计的精度。在本研究中,我们提出一种基于到达时间(Time-of-Arrival, ToA)的位置估计方法。ToA数据通常是有用的。然而,由于无线电波的反射,ToA数据包含一个正偏差。因此,如果没有精确的偏差校正,很难直接从ToA数据估计TAG的位置。在本文中,我们提出了一种利用伽玛回归和旋转分布对TAG位置进行极大似然估计的方法,并证明了有偏差校正的估计比没有偏差校正的估计更准确。此外,我们还证明了我们的方法还为TAG位置提供了一个置信区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信