Automatic Classification and Entity Relation Detection in Hungarian Spinal MRI Reports

András Kicsi, Klaudia Szabó Ledenyi, P. Pusztai, László Vidács
{"title":"Automatic Classification and Entity Relation Detection in Hungarian Spinal MRI Reports","authors":"András Kicsi, Klaudia Szabó Ledenyi, P. Pusztai, László Vidács","doi":"10.1109/SEH52539.2021.00010","DOIUrl":null,"url":null,"abstract":"A great number of radiologic reports are created each year which incorporate the expertise of radiologists. This knowledge could be exploited via machine understanding. This could provide valuable statistics and visualization of the reports, and as training data, and it could also contribute to later automatic reporting applications. In our current work, we present our first steps toward the machine understanding of clinical reports of the spinal region, written in the Hungarian language. Our system provides an automatic classification and connection detection for various entities in the text. Our classification is achieved via bi-directional long short-term memory and conditional random fields producing 0.87–0.95 F1-score values, while the extraction of connection relies on linguistic analysis and predefined rules. The extracted information is displayed in an easily comprehensible, well-formed tree-structure.","PeriodicalId":415051,"journal":{"name":"2021 IEEE/ACM 3rd International Workshop on Software Engineering for Healthcare (SEH)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 3rd International Workshop on Software Engineering for Healthcare (SEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEH52539.2021.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A great number of radiologic reports are created each year which incorporate the expertise of radiologists. This knowledge could be exploited via machine understanding. This could provide valuable statistics and visualization of the reports, and as training data, and it could also contribute to later automatic reporting applications. In our current work, we present our first steps toward the machine understanding of clinical reports of the spinal region, written in the Hungarian language. Our system provides an automatic classification and connection detection for various entities in the text. Our classification is achieved via bi-directional long short-term memory and conditional random fields producing 0.87–0.95 F1-score values, while the extraction of connection relies on linguistic analysis and predefined rules. The extracted information is displayed in an easily comprehensible, well-formed tree-structure.
匈牙利脊柱MRI报告中的自动分类和实体关系检测
每年都有大量的放射学报告,其中包括放射科医生的专业知识。这些知识可以通过机器理解加以利用。这可以提供有价值的统计数据和可视化报告,并作为培训数据,还可以为以后的自动报告应用程序做出贡献。在我们目前的工作中,我们向机器理解脊柱区域的临床报告迈出了第一步,这些报告是用匈牙利语写的。我们的系统为文本中的各种实体提供了自动分类和连接检测。我们的分类是通过双向长短期记忆和产生0.87-0.95 f1分值的条件随机场实现的,而连接的提取则依赖于语言分析和预定义规则。提取的信息以易于理解、格式良好的树状结构显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信