The fundamental solution to \Box_{𝑏} on quadric manifolds with nonzero eigenvalues

A. Boggess, A. Raich
{"title":"The fundamental solution to \\Box_{𝑏} on quadric manifolds with nonzero eigenvalues","authors":"A. Boggess, A. Raich","doi":"10.1090/btran/121","DOIUrl":null,"url":null,"abstract":"This paper is part of a continuing examination into the geometric and analytic properties of the Kohn Laplacian and its inverse on general quadric submanifolds of \n\n \n \n \n \n C\n \n n\n \n ×\n \n \n C\n \n m\n \n \n \\mathbb {C}^n\\times \\mathbb {C}^m\n \n\n. The goal of this article is explore the complex Green operator in the case that the eigenvalues of the directional Levi forms are nonvanishing. We (1) investigate the geometric conditions on \n\n \n M\n M\n \n\n which the eigenvalue condition forces, (2) establish optimal pointwise upper bounds on complex Green operator and its derivatives, (3) explore the \n\n \n \n L\n p\n \n L^p\n \n\n and \n\n \n \n L\n p\n \n L^p\n \n\n-Sobolev mapping properties of the associated kernels, and (4) provide examples.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is part of a continuing examination into the geometric and analytic properties of the Kohn Laplacian and its inverse on general quadric submanifolds of C n × C m \mathbb {C}^n\times \mathbb {C}^m . The goal of this article is explore the complex Green operator in the case that the eigenvalues of the directional Levi forms are nonvanishing. We (1) investigate the geometric conditions on M M which the eigenvalue condition forces, (2) establish optimal pointwise upper bounds on complex Green operator and its derivatives, (3) explore the L p L^p and L p L^p -Sobolev mapping properties of the associated kernels, and (4) provide examples.
非零特征值二次流形\Box_{𝑏}的基本解
本文是继续研究n × cm \mathbb {C} n\乘以mathbb {C} m的一般二次子流形上的Kohn Laplacian及其逆的几何和解析性质的一部分。本文的目的是探讨在有向列维形式的特征值不消失的情况下的复格林算子。我们(1)研究了特征值条件在M M上的几何条件,(2)建立了复格林算子及其导数的最优点上界,(3)探索了相关核的L p L^p和L p L^p -Sobolev映射性质,(4)提供了示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信