Artificial neural network for decision of software maliciousness

Zhang Yichi, Pang Jianmin, Zhao Rongcai, Guo Zhichang
{"title":"Artificial neural network for decision of software maliciousness","authors":"Zhang Yichi, Pang Jianmin, Zhao Rongcai, Guo Zhichang","doi":"10.1109/ICICISYS.2010.5658423","DOIUrl":null,"url":null,"abstract":"With the rapidly development of virus technology, the number of malicious code has continued to increase. So it is imperative to optimize the traditional manual analysis method by automatic maliciousness decision system. Motivated by the inference technique for detecting viruses, and a recent successful classification method, we explore Radux-an automatic software maliciousness decision system. It rests on artificial neural network based on behavior hidden in malicious code. Decompile technique is applied to characterize behavioral and structural properties of binary code, which creates more abstract descriptions of malware. Experiment shows that this system can decision software maliciousness efficiently.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"152 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapidly development of virus technology, the number of malicious code has continued to increase. So it is imperative to optimize the traditional manual analysis method by automatic maliciousness decision system. Motivated by the inference technique for detecting viruses, and a recent successful classification method, we explore Radux-an automatic software maliciousness decision system. It rests on artificial neural network based on behavior hidden in malicious code. Decompile technique is applied to characterize behavioral and structural properties of binary code, which creates more abstract descriptions of malware. Experiment shows that this system can decision software maliciousness efficiently.
基于人工神经网络的软件恶意判断
随着病毒技术的快速发展,恶意代码的数量不断增加。因此,利用自动恶意决策系统对传统的人工分析方法进行优化势在必行。受病毒检测的推理技术和最近成功的分类方法的启发,我们研究了一种软件恶意自动决策系统radux。它基于基于隐藏在恶意代码中的行为的人工神经网络。反编译技术用于描述二进制代码的行为和结构特性,从而创建更抽象的恶意软件描述。实验表明,该系统能有效地判断软件的恶意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信