Recursive Least Square and Fuzzy Modelling Using Genetic Algorithm for Process Control Application

R. A. Rahman, R. Yusof, M. Khalid
{"title":"Recursive Least Square and Fuzzy Modelling Using Genetic Algorithm for Process Control Application","authors":"R. A. Rahman, R. Yusof, M. Khalid","doi":"10.1109/AMS.2007.83","DOIUrl":null,"url":null,"abstract":"A technique for the modelling of nonlinear process control using recursive least square and Takagi-Sugeno fuzzy system with genetic algorithm topology is described. This paper discusses the identification of parameters of the fuzzy sets at the antecedent part and linear model at the consequent part of fuzzy model within an application to process control. The key issues of finding the best model of the process are described. Results show that fuzzy model with genetic algorithm gives minimum mean squared error compare with recursive least square","PeriodicalId":198751,"journal":{"name":"First Asia International Conference on Modelling & Simulation (AMS'07)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Asia International Conference on Modelling & Simulation (AMS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2007.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A technique for the modelling of nonlinear process control using recursive least square and Takagi-Sugeno fuzzy system with genetic algorithm topology is described. This paper discusses the identification of parameters of the fuzzy sets at the antecedent part and linear model at the consequent part of fuzzy model within an application to process control. The key issues of finding the best model of the process are described. Results show that fuzzy model with genetic algorithm gives minimum mean squared error compare with recursive least square
递归最小二乘和模糊遗传建模在过程控制中的应用
介绍了一种基于递推最小二乘和Takagi-Sugeno模糊系统的非线性过程控制建模技术。本文讨论了在过程控制中的应用中,模糊模型的前置部分模糊集参数辨识和后置部分线性模型参数辨识。描述了寻找过程最佳模型的关键问题。结果表明,与递推最小二乘模型相比,遗传算法模糊模型的均方误差最小
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信