Ultra-Thin Chips (UTC) Integration on Inkjet-Printed Papers

Muhammad-Hassan Malik, Lukas Rauter, H. Zangl, A. Binder, A. Roshanghias
{"title":"Ultra-Thin Chips (UTC) Integration on Inkjet-Printed Papers","authors":"Muhammad-Hassan Malik, Lukas Rauter, H. Zangl, A. Binder, A. Roshanghias","doi":"10.1109/fleps53764.2022.9781561","DOIUrl":null,"url":null,"abstract":"Paper as a substrate for electronic circuits with inkjet printing of conductors and insulators offers advantages such as low-cost, flexibility, eco-friendliness, and recyclability. To realize circuitry on papers, inkjet printing is one of the standard methodologies. However, heterogeneous integration of components on inkjet printed papers has faced reliability issues; therefore, inkjet printing is still not the mainstream in the fabrication of electronic papers (E-papers). Accordingly, in this study, the feasibility and reliability of integrating ultra-thin chips (UTC) on inkjet printed papers were discussed and analyzed. The significant effects of printed layer thickness on both electrical performance and long-term stability of the E-papers were demonstrated. The results were also compared to screen-printed papers.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Paper as a substrate for electronic circuits with inkjet printing of conductors and insulators offers advantages such as low-cost, flexibility, eco-friendliness, and recyclability. To realize circuitry on papers, inkjet printing is one of the standard methodologies. However, heterogeneous integration of components on inkjet printed papers has faced reliability issues; therefore, inkjet printing is still not the mainstream in the fabrication of electronic papers (E-papers). Accordingly, in this study, the feasibility and reliability of integrating ultra-thin chips (UTC) on inkjet printed papers were discussed and analyzed. The significant effects of printed layer thickness on both electrical performance and long-term stability of the E-papers were demonstrated. The results were also compared to screen-printed papers.
超薄芯片(UTC)在喷墨打印纸张上的集成
纸作为导电体和绝缘体喷墨印刷电子电路的基板具有成本低、灵活、环保和可回收等优点。为了在纸上实现电路,喷墨印刷是标准方法之一。然而,喷墨打印纸上组件的异构集成面临着可靠性问题;因此,喷墨打印在制造电子纸(E-papers)方面仍然不是主流。因此,本研究讨论和分析了在喷墨打印纸上集成超薄芯片(UTC)的可行性和可靠性。证明了印刷层厚度对电子纸的电性能和长期稳定性有显著影响。结果还与丝网印刷的纸张进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信