Scalable Hadoop-Based Pooled Time Series of Big Video Data from the Deep Web

C. Mattmann, M. Sharan
{"title":"Scalable Hadoop-Based Pooled Time Series of Big Video Data from the Deep Web","authors":"C. Mattmann, M. Sharan","doi":"10.1145/3078971.3079019","DOIUrl":null,"url":null,"abstract":"We contribute a scalable, open source implementation of the Pooled Time Series (PoT) algorithm from CVPR 2015. The algorithm is evaluated on approximately 6800 human trafficking (HT) videos collected from the deep and dark web, and on an open dataset: the Human Motion Database (HMDB). We describe PoT and our motivation for using it on larger data and the issues we encountered. Our new solution reimagines PoT as an Apache Hadoop-based algorithm. We demonstrate that our new Hadoop-based algorithm successfully identifies similar videos in the HT and HMDB datasets and we evaluate the algorithm qualitatively and quantitatively.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We contribute a scalable, open source implementation of the Pooled Time Series (PoT) algorithm from CVPR 2015. The algorithm is evaluated on approximately 6800 human trafficking (HT) videos collected from the deep and dark web, and on an open dataset: the Human Motion Database (HMDB). We describe PoT and our motivation for using it on larger data and the issues we encountered. Our new solution reimagines PoT as an Apache Hadoop-based algorithm. We demonstrate that our new Hadoop-based algorithm successfully identifies similar videos in the HT and HMDB datasets and we evaluate the algorithm qualitatively and quantitatively.
基于hadoop的深度网络大视频数据池时间序列
我们从CVPR 2015中贡献了一个可扩展的、开源的池时间序列(PoT)算法实现。该算法在深网和暗网中收集的大约6800个人口贩卖视频和一个开放的数据集:人类运动数据库(HMDB)上进行了评估。我们描述了PoT和我们在大数据上使用它的动机以及我们遇到的问题。我们的新解决方案将PoT重新想象为基于Apache hadoop的算法。我们证明了我们的基于hadoop的新算法成功地识别了HT和HMDB数据集中的相似视频,并对算法进行了定性和定量评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信