Hybrid video system supporting content-based retrieval

Mi Hee, Y. Ik, Kio-Chung Kim
{"title":"Hybrid video system supporting content-based retrieval","authors":"Mi Hee, Y. Ik, Kio-Chung Kim","doi":"10.1109/ICCIMA.1999.798539","DOIUrl":null,"url":null,"abstract":"The article suggests a Hybrid Video System (HVS) which supports the semantic retrieval of all types of users and the similarity retrieval of indefinitely formed and very large amounts of video data. The HVS divides a set of video data into video documents, sequences, scenes and objects to model the metadata and suggests a Three layered Hybrid Object-oriented Metadata Model (THOMM) which is composed of the raw data layer for physical video stream. The metadata layer supports feature based retrieval and similarity retrieval and the semantic layer reforms queries. Grounded on this model, we suggest a video query language which makes content-based query and similarity query possible and Video Query Processor (VQP) to process the query. In particular, the similarity query processed by performing the annotation-based retrieval using the concept layer and then the feature-based retrieval using the object-feature layer. Thus search space and time can be reduced. Also we present the formula for degree of similarity. The suggested system is implemented with using the Visual C++, ActiveX and ORACLE under Windows NT.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The article suggests a Hybrid Video System (HVS) which supports the semantic retrieval of all types of users and the similarity retrieval of indefinitely formed and very large amounts of video data. The HVS divides a set of video data into video documents, sequences, scenes and objects to model the metadata and suggests a Three layered Hybrid Object-oriented Metadata Model (THOMM) which is composed of the raw data layer for physical video stream. The metadata layer supports feature based retrieval and similarity retrieval and the semantic layer reforms queries. Grounded on this model, we suggest a video query language which makes content-based query and similarity query possible and Video Query Processor (VQP) to process the query. In particular, the similarity query processed by performing the annotation-based retrieval using the concept layer and then the feature-based retrieval using the object-feature layer. Thus search space and time can be reduced. Also we present the formula for degree of similarity. The suggested system is implemented with using the Visual C++, ActiveX and ORACLE under Windows NT.
支持基于内容检索的混合视频系统
本文提出了一种混合视频系统(HVS),该系统支持对所有类型用户的语义检索和对不确定形式和非常大量的视频数据的相似度检索。HVS将一组视频数据划分为视频文档、视频序列、场景和对象进行元数据建模,并提出了一种三层混合面向对象元数据模型(THOMM),该模型由物理视频流的原始数据层组成。元数据层支持基于特征的检索和相似度检索,语义层对查询进行改革。在此基础上,提出了一种视频查询语言,实现了基于内容的查询和相似度的查询,并利用视频查询处理器(VQP)对查询进行处理。其中,相似性查询采用概念层进行基于标注的检索,然后使用对象-特征层进行基于特征的检索。这样可以减少搜索空间和时间。并给出了相似度的计算公式。该系统是在Windows NT环境下使用Visual c++、ActiveX和ORACLE实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信