Simple local partition rules in multi-bit decision fusion

M. Kam, Xiaoxun Zhu
{"title":"Simple local partition rules in multi-bit decision fusion","authors":"M. Kam, Xiaoxun Zhu","doi":"10.1109/MFI.1994.398456","DOIUrl":null,"url":null,"abstract":"A parallel decision fusion system is studied where local detectors (LDs) collect information about a binary hypothesis, and transmit multi-bit intermediate decisions to a data fusion center (DFC). The DFC compresses the local decisions into a final binary decision. The objective function is the Bayesian risk. Equations for the optimal decision rules for the LDs and the DFC have been derived by Lee-Chao (1989), but the computational complexity of solving them is formidable. To address this difficulty, we propose several suboptimal LD-design schemes. For each one we design a DFC, which is optimally conditioned on the fixed LD rules. We calculate the exact performance of each scheme, thus providing a means for selection of the most appropriate one under given observation conditions. We demonstrate performance for two important binary decision tasks: discrimination between two Gaussian hypotheses of equal variances and different means; and discrimination between two Gaussian hypotheses of equal means and different variances.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A parallel decision fusion system is studied where local detectors (LDs) collect information about a binary hypothesis, and transmit multi-bit intermediate decisions to a data fusion center (DFC). The DFC compresses the local decisions into a final binary decision. The objective function is the Bayesian risk. Equations for the optimal decision rules for the LDs and the DFC have been derived by Lee-Chao (1989), but the computational complexity of solving them is formidable. To address this difficulty, we propose several suboptimal LD-design schemes. For each one we design a DFC, which is optimally conditioned on the fixed LD rules. We calculate the exact performance of each scheme, thus providing a means for selection of the most appropriate one under given observation conditions. We demonstrate performance for two important binary decision tasks: discrimination between two Gaussian hypotheses of equal variances and different means; and discrimination between two Gaussian hypotheses of equal means and different variances.<>
多比特决策融合中的简单局部划分规则
研究了一种并行决策融合系统,其中局部检测器(LDs)收集二元假设的信息,并将多比特的中间决策传输到数据融合中心(DFC)。DFC将本地决策压缩为最终的二进制决策。目标函数是贝叶斯风险。Lee-Chao(1989)已经推导出了ld和DFC的最优决策规则方程,但求解它们的计算复杂度是惊人的。为了解决这个困难,我们提出了几个次优的ld设计方案。对于每一种情况,我们都设计了一个DFC,该DFC以固定的LD规则为最优条件。我们计算了每种方案的精确性能,从而提供了在给定观测条件下选择最合适方案的方法。我们展示了两个重要的二元决策任务的性能:两个方差相等且不同均值的高斯假设之间的区分;以及两个均值相等、方差不同的高斯假设之间的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信