Predictive functional control based on differential evolution algorithm and its dynamic performance analysis

Ma Xiao-ping, Li Ya-peng, Su pi-zhao, An Feng-shuan
{"title":"Predictive functional control based on differential evolution algorithm and its dynamic performance analysis","authors":"Ma Xiao-ping, Li Ya-peng, Su pi-zhao, An Feng-shuan","doi":"10.1109/CCDC.2010.5499128","DOIUrl":null,"url":null,"abstract":"An optimization method of predictive function control (PFC) parameters that based on modified differential evolution (DE) is provided. Differential evolution is a new evolutionary computation technology and exhibits good performance on optimization. Differential evolution algorithm as a relatively new evolutionary computation technique has a good optimization. Therefore, the modified differential evolution which is proposed to solve the optimization problems. The new algorithm uses initialization and the scale factor and crossover probability to improve PFC control performance in terms of model mismatch and parameters optimization. Simulation results show that the performance of the optimized DE PFC controller is superior to that of the conventional PFC controller.","PeriodicalId":227938,"journal":{"name":"2010 Chinese Control and Decision Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2010.5499128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An optimization method of predictive function control (PFC) parameters that based on modified differential evolution (DE) is provided. Differential evolution is a new evolutionary computation technology and exhibits good performance on optimization. Differential evolution algorithm as a relatively new evolutionary computation technique has a good optimization. Therefore, the modified differential evolution which is proposed to solve the optimization problems. The new algorithm uses initialization and the scale factor and crossover probability to improve PFC control performance in terms of model mismatch and parameters optimization. Simulation results show that the performance of the optimized DE PFC controller is superior to that of the conventional PFC controller.
基于差分进化算法的预测函数控制及其动态性能分析
提出了一种基于改进差分进化的预测函数控制(PFC)参数优化方法。差分进化是一种新的进化计算技术,具有良好的优化性能。差分进化算法作为一种较新的进化计算技术,具有较好的优化性能。因此,提出了改进的微分进化算法来解决优化问题。该算法通过初始化、比例因子和交叉概率等方法提高了PFC控制在模型失配和参数优化方面的性能。仿真结果表明,优化后的DE PFC控制器的性能优于传统的PFC控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信