Sentiment Classification of English and Hindi Music Lyrics Using Supervised Machine Learning Algorithms

S. N., Shruti Wagle, Priyanka Ghosh, Karishma Kishore
{"title":"Sentiment Classification of English and Hindi Music Lyrics Using Supervised Machine Learning Algorithms","authors":"S. N., Shruti Wagle, Priyanka Ghosh, Karishma Kishore","doi":"10.1109/ASIANCON55314.2022.9908688","DOIUrl":null,"url":null,"abstract":"Finding music based on one’s mood is difficult unless it is manually classified and separated into distinct playlists. This is especially tough when the song is not in English due to varying lexical and syntactic styles. Our project employs textual sentiment analysis by testing various binary classifier algorithms - Random Forest, Naive Bayes, Support Vector Machine (SVM), and AdaBoost - to gauge which method is best for classifying English and Hindi language music lyrics into positive (happy) and negative (sad) sentiment.","PeriodicalId":429704,"journal":{"name":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIANCON55314.2022.9908688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finding music based on one’s mood is difficult unless it is manually classified and separated into distinct playlists. This is especially tough when the song is not in English due to varying lexical and syntactic styles. Our project employs textual sentiment analysis by testing various binary classifier algorithms - Random Forest, Naive Bayes, Support Vector Machine (SVM), and AdaBoost - to gauge which method is best for classifying English and Hindi language music lyrics into positive (happy) and negative (sad) sentiment.
使用监督机器学习算法的英语和印地语音乐歌词情感分类
根据一个人的情绪找到音乐是很困难的,除非它被手动分类并分成不同的播放列表。当这首歌不是英文的时候,由于词汇和句法风格的不同,这尤其困难。我们的项目采用文本情感分析,通过测试各种二元分类算法——随机森林、朴素贝叶斯、支持向量机(SVM)和AdaBoost——来衡量哪种方法最适合将英语和印地语音乐歌词分为积极(快乐)和消极(悲伤)情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信