Waveform Krylov Subspace Methods on a Massively Parallel Computer

W. Luk, O. Wing
{"title":"Waveform Krylov Subspace Methods on a Massively Parallel Computer","authors":"W. Luk, O. Wing","doi":"10.1142/S0129053397000076","DOIUrl":null,"url":null,"abstract":"Recently, the waveform generalized minimal residual method (WGMRES) was proposed for solving differential-algebraic equations problems. Based on this, several waveform Krylov subspace methods are developed for comparison. Particularly, we propose using an adjoint operator for the waveform bi-conjugate gradient method and the waveform quasi-minimal residual method. The difficulties of developing the adjoint operator will be addressed. Furthermore, these methods are applied to solve a large sparse linear system of ordinary differential equations arising from a parabolic partial differential equation on a DECmpp 12000/Sx parallel computer for comparison. Numerical results show that the WGMRES method and the waveform bi-conjugate gradient stabilized method can achieve better performance than the conventional waveform relaxation methods.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129053397000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the waveform generalized minimal residual method (WGMRES) was proposed for solving differential-algebraic equations problems. Based on this, several waveform Krylov subspace methods are developed for comparison. Particularly, we propose using an adjoint operator for the waveform bi-conjugate gradient method and the waveform quasi-minimal residual method. The difficulties of developing the adjoint operator will be addressed. Furthermore, these methods are applied to solve a large sparse linear system of ordinary differential equations arising from a parabolic partial differential equation on a DECmpp 12000/Sx parallel computer for comparison. Numerical results show that the WGMRES method and the waveform bi-conjugate gradient stabilized method can achieve better performance than the conventional waveform relaxation methods.
大规模并行计算机上的波形Krylov子空间方法
近年来,波形广义最小残差法(WGMRES)被提出用于求解微分代数方程问题。在此基础上,提出了几种波形Krylov子空间方法进行比较。特别地,我们提出了波形双共轭梯度法和波形拟最小残差法的伴随算子。讨论了伴随算符开发的难点。在DECmpp 12000/Sx并行计算机上,应用这些方法求解了一个由抛物型偏微分方程引起的大型稀疏线性常微分方程组,并进行了比较。数值结果表明,WGMRES方法和波形双共轭梯度稳定化方法比传统的波形松弛方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信