Exact Distance Oracles for Planar Graphs with Failing Vertices

P. Charalampopoulos, S. Mozes, Benjamin Tebeka
{"title":"Exact Distance Oracles for Planar Graphs with Failing Vertices","authors":"P. Charalampopoulos, S. Mozes, Benjamin Tebeka","doi":"10.1145/3511541","DOIUrl":null,"url":null,"abstract":"We consider exact distance oracles for directed weighted planar graphs in the presence of failing vertices. Given a source vertex u, a target vertex v and a set X of k failed vertices, such an oracle returns the length of a shortest u-to-v path that avoids all vertices in X. We propose oracles that can handle any number k of failures. We show several tradeoffs between space, query time, and preprocessing time. In particular, for a directed weighted planar graph with n vertices and any constant k, we show an Õ(n)-size, Õ(√ n)-query-time oracle.1 We then present a space vs. query time tradeoff: for any q ε [ 1,√ n ], we propose an oracle of size nk+1+o(1)/q2k that answers queries in Õ(q) time. For single vertex failures (k = 1), our n2+o(1)/q2-size, Õ(q)-query-time oracle improves over the previously best known tradeoff of Baswana et al. SODA 2012 by polynomial factors for q ≥ nt, for any t ∈ (0,1/2]. For multiple failures, no planarity exploiting results were previously known.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We consider exact distance oracles for directed weighted planar graphs in the presence of failing vertices. Given a source vertex u, a target vertex v and a set X of k failed vertices, such an oracle returns the length of a shortest u-to-v path that avoids all vertices in X. We propose oracles that can handle any number k of failures. We show several tradeoffs between space, query time, and preprocessing time. In particular, for a directed weighted planar graph with n vertices and any constant k, we show an Õ(n)-size, Õ(√ n)-query-time oracle.1 We then present a space vs. query time tradeoff: for any q ε [ 1,√ n ], we propose an oracle of size nk+1+o(1)/q2k that answers queries in Õ(q) time. For single vertex failures (k = 1), our n2+o(1)/q2-size, Õ(q)-query-time oracle improves over the previously best known tradeoff of Baswana et al. SODA 2012 by polynomial factors for q ≥ nt, for any t ∈ (0,1/2]. For multiple failures, no planarity exploiting results were previously known.
具有失败顶点的平面图形的精确距离预言
我们考虑了有向加权平面图中存在失败顶点的精确距离预言。给定一个源顶点u,一个目标顶点v和一个由k个失败顶点组成的集合X,这样的oracle返回一条最短的u到v路径的长度,该路径避免了X中的所有顶点。我们提出可以处理任意数量的k个失败的oracle。我们展示了空间、查询时间和预处理时间之间的几种权衡。特别是,对于具有n个顶点和任意常数k的有向加权平面图,我们显示了Õ(n)-大小,Õ(√n)-查询时间的oracle 1然后,我们提出了空间与查询时间的权衡:对于任意q ε[1,√n],我们提出了一个大小为nk+1+o(1)/q2k的oracle,它在Õ(q)时间内回答查询。对于单顶点失败(k = 1),我们的n2+o(1)/q2-size, Õ(q)-查询时间oracle比之前最著名的Baswana等人的权衡改进。SODA 2012,对于任意t∈(0,1/2),q≥nt的多项式因子。对于多次失败,以前没有已知的平面性开发结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信