LMS-based low-complexity game workload prediction for DVFS

Benedikt Dietrich, S. Nunna, Dip Goswami, S. Chakraborty, M. Gries
{"title":"LMS-based low-complexity game workload prediction for DVFS","authors":"Benedikt Dietrich, S. Nunna, Dip Goswami, S. Chakraborty, M. Gries","doi":"10.1109/ICCD.2010.5647675","DOIUrl":null,"url":null,"abstract":"While dynamic voltage and frequency scaling (DVFS) based power management has been widely studied for video processing, there is very little work on game power management. Recent work on proportional-integral-derivative (PID) controllers fro predicting game workload used hand-turned PID controller gains on relatively short game plays. This left open questions on the robustness of the PID controller and how sensitive the prediction quality is on the choice of the gain values, especially for long game plays involving different scenarios and scene changes. In this paper we propose a Least Mean Squares (LMS) Linear Predictor, which is a regression model commonly used for system parameter identification. Our results show that game workload variation can be estimated using a linear-in-parameters (LIP) model. This observation dramatically reduces the complexity of parameter estimation as the LMS Linear Predictor learns the relevant parameters of the model iteratively as the game progresses. The only parameter to be tuned by the system designer is the learning rate, which is relatively straightforward. Our experimental results using the LMS Linear Predictor show comparable power savings and game quality with those obtained from a highly-tuned PID controller.","PeriodicalId":182350,"journal":{"name":"2010 IEEE International Conference on Computer Design","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2010.5647675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

While dynamic voltage and frequency scaling (DVFS) based power management has been widely studied for video processing, there is very little work on game power management. Recent work on proportional-integral-derivative (PID) controllers fro predicting game workload used hand-turned PID controller gains on relatively short game plays. This left open questions on the robustness of the PID controller and how sensitive the prediction quality is on the choice of the gain values, especially for long game plays involving different scenarios and scene changes. In this paper we propose a Least Mean Squares (LMS) Linear Predictor, which is a regression model commonly used for system parameter identification. Our results show that game workload variation can be estimated using a linear-in-parameters (LIP) model. This observation dramatically reduces the complexity of parameter estimation as the LMS Linear Predictor learns the relevant parameters of the model iteratively as the game progresses. The only parameter to be tuned by the system designer is the learning rate, which is relatively straightforward. Our experimental results using the LMS Linear Predictor show comparable power savings and game quality with those obtained from a highly-tuned PID controller.
基于lms的DVFS低复杂度游戏工作负荷预测
虽然基于动态电压和频率缩放(DVFS)的电源管理已经被广泛研究用于视频处理,但在游戏电源管理方面的工作却很少。最近关于比例-积分-导数(PID)控制器预测游戏工作负荷的研究使用了手动PID控制器在相对较短的游戏过程中的增益。这留下了关于PID控制器的鲁棒性和预测质量对增益值的选择有多敏感的问题,特别是对于涉及不同场景和场景变化的长时间游戏。本文提出了一种最小均方线性预测器(LMS),它是一种常用的用于系统参数辨识的回归模型。我们的研究结果表明,游戏工作量的变化可以使用参数线性(LIP)模型来估计。这种观察显著降低了参数估计的复杂性,因为LMS线性预测器随着游戏的进行迭代地学习模型的相关参数。系统设计者需要调整的唯一参数是学习率,这是相对简单的。我们使用LMS线性预测器的实验结果显示,与高度调谐的PID控制器获得的结果相比,节省的功率和游戏质量相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信