{"title":"Change-Point Detection in Time-Series Data Based on Subspace Identification","authors":"Y. Kawahara, T. Yairi, K. Machida","doi":"10.1109/ICDM.2007.78","DOIUrl":null,"url":null,"abstract":"In this paper, we propose series of algorithms for detecting change points in time-series data based on subspace identification, meaning a geometric approach for estimating linear state-space models behind time-series data. Our algorithms are derived from the principle that the subspace spanned by the columns of an observability matrix and the one spanned by the subsequences of time-series data are approximately equivalent. In this paper, we derive a batch-type algorithm applicable to ordinary time-series data, i.e. consisting of only output series, and then introduce the online version of the algorithm and the extension to be available with input-output time-series data. We illustrate the effectiveness of our algorithms with comparative experiments using some artificial and real datasets.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119
Abstract
In this paper, we propose series of algorithms for detecting change points in time-series data based on subspace identification, meaning a geometric approach for estimating linear state-space models behind time-series data. Our algorithms are derived from the principle that the subspace spanned by the columns of an observability matrix and the one spanned by the subsequences of time-series data are approximately equivalent. In this paper, we derive a batch-type algorithm applicable to ordinary time-series data, i.e. consisting of only output series, and then introduce the online version of the algorithm and the extension to be available with input-output time-series data. We illustrate the effectiveness of our algorithms with comparative experiments using some artificial and real datasets.