{"title":"Reconfigurable Intelligent Surface Assisted Localization Over Near-Field Beam Squint Effect","authors":"Zhuoran Li, Ziwei Wan, Keke Ying, Yikun Mei, Malong Ke, Zhen Gao","doi":"10.1109/ISWCS56560.2022.9940428","DOIUrl":null,"url":null,"abstract":"High precision network sensing and localization is an important task in 6G wireless communications, where the millimeter-wave (mmWave) / terahertz (THz) extremely large-scale multiple-input-multiple-output (XL-MIMO) technique is expected to be deployed to further boost system capacity. However, the ever-increasing bandwidth and array aperture in mmWave/THz XL-MIMO induce the challenging near-field beam squint effect. In this paper, we propose a reconfigurable intelligent surface (RIS) assisted localization (RISAL) paradigm in near-field conditions. Specifically, the polar-domain gradient descent algorithm and multiple signal classification (MUSIC) algorithm are applied to RISAL, which is able to realize high precision localization under the near-field beam squint effect. Simulation results demonstrate the superiority of the proposed algorithm. With the proposed localization algorithm, the angle accuracy can be 1 to 2 orders of magnitude higher than existing algorithms, and centimeter-level distance accuracy can be achieved.","PeriodicalId":141258,"journal":{"name":"2022 International Symposium on Wireless Communication Systems (ISWCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS56560.2022.9940428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High precision network sensing and localization is an important task in 6G wireless communications, where the millimeter-wave (mmWave) / terahertz (THz) extremely large-scale multiple-input-multiple-output (XL-MIMO) technique is expected to be deployed to further boost system capacity. However, the ever-increasing bandwidth and array aperture in mmWave/THz XL-MIMO induce the challenging near-field beam squint effect. In this paper, we propose a reconfigurable intelligent surface (RIS) assisted localization (RISAL) paradigm in near-field conditions. Specifically, the polar-domain gradient descent algorithm and multiple signal classification (MUSIC) algorithm are applied to RISAL, which is able to realize high precision localization under the near-field beam squint effect. Simulation results demonstrate the superiority of the proposed algorithm. With the proposed localization algorithm, the angle accuracy can be 1 to 2 orders of magnitude higher than existing algorithms, and centimeter-level distance accuracy can be achieved.