Stability Analysis of Iterative Methods for Solving Nonlinear Algebraic Systems

Raudys R. Capdevila, A. Cordero, J. Torregrosa
{"title":"Stability Analysis of Iterative Methods for Solving Nonlinear Algebraic Systems","authors":"Raudys R. Capdevila, A. Cordero, J. Torregrosa","doi":"10.9734/bpi/ctmcs/v9/11959d","DOIUrl":null,"url":null,"abstract":"In this chapter, we present a multidimensional real dynamical analysis of a new class of iterative method for approximating the solutions of nonlinear systems of algebraic equations. With the use of the well known discrete dynamic multivariate tools, we study the behavior of the multidimensional rational operator associated with the iterative method, acting on a system of quadratic polynomials of separate and mixed variables, respectively. Some results about the stability of the proposed class are presented. These results allow us to detect and avoid the elements of the family with bad stability properties and chaotical behaviour. Some numerical tests are presented for confirming the theoretical and dynamical results.","PeriodicalId":420784,"journal":{"name":"Current Topics on Mathematics and Computer Science Vol. 9","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics on Mathematics and Computer Science Vol. 9","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bpi/ctmcs/v9/11959d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter, we present a multidimensional real dynamical analysis of a new class of iterative method for approximating the solutions of nonlinear systems of algebraic equations. With the use of the well known discrete dynamic multivariate tools, we study the behavior of the multidimensional rational operator associated with the iterative method, acting on a system of quadratic polynomials of separate and mixed variables, respectively. Some results about the stability of the proposed class are presented. These results allow us to detect and avoid the elements of the family with bad stability properties and chaotical behaviour. Some numerical tests are presented for confirming the theoretical and dynamical results.
求解非线性代数系统的迭代法的稳定性分析
在这一章中,我们给出了一类新的迭代逼近非线性代数方程组解的多维实动力分析。利用众所周知的离散动态多元工具,我们研究了与迭代方法相关的多维有理算子分别作用于分离变量和混合变量二次多项式系统的行为。给出了该类稳定性的一些结果。这些结果使我们能够检测和避免具有不良稳定性和混乱行为的家庭元素。为了验证理论和动力学结果,给出了一些数值试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信