A Simple Stochastic Differential Equation with Discontinuous Drift

HAS Pub Date : 2013-08-22 DOI:10.4204/EPTCS.124.11
Maria Simonsen, J. Leth, H. Schiøler, H. Cornean
{"title":"A Simple Stochastic Differential Equation with Discontinuous Drift","authors":"Maria Simonsen, J. Leth, H. Schiøler, H. Cornean","doi":"10.4204/EPTCS.124.11","DOIUrl":null,"url":null,"abstract":"In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. We apply two approaches: The Euler-Maruyama method and the Fokker-Planck equation and show that a candidate density function based on the Euler-Maruyama method approximates a candidate density function based on the stationary Fokker-Planck equation. Furthermore, we introduce a smooth function which approximates the discontinuous drift and apply the Euler-Maruyama method and the Fokker-Planck equation with this input. The point of departure for this work is a particular SDE with discontinuous drift.","PeriodicalId":360438,"journal":{"name":"HAS","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.124.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. We apply two approaches: The Euler-Maruyama method and the Fokker-Planck equation and show that a candidate density function based on the Euler-Maruyama method approximates a candidate density function based on the stationary Fokker-Planck equation. Furthermore, we introduce a smooth function which approximates the discontinuous drift and apply the Euler-Maruyama method and the Fokker-Planck equation with this input. The point of departure for this work is a particular SDE with discontinuous drift.
一个具有不连续漂移的简单随机微分方程
本文研究了具有不连续漂移的随机微分方程的解。我们应用了Euler-Maruyama方法和Fokker-Planck方程两种方法,并证明了基于Euler-Maruyama方法的候选密度函数近似于基于平稳Fokker-Planck方程的候选密度函数。此外,我们引入了一个近似于不连续漂移的光滑函数,并应用了Euler-Maruyama方法和Fokker-Planck方程。这项工作的出发点是一个具有不连续漂移的特殊SDE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HAS
HAS
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信