Feature track summary visualization for sequential multi-view reconstruction

S. Recker, Mauricio Hess-Flores, K. Joy
{"title":"Feature track summary visualization for sequential multi-view reconstruction","authors":"S. Recker, Mauricio Hess-Flores, K. Joy","doi":"10.1109/AIPR.2013.6749337","DOIUrl":null,"url":null,"abstract":"Analyzing sources and causes of error in multi-view scene reconstruction is difficult. In the absence of any ground-truth information, reprojection error is the only valid metric to assess error. Unfortunately, inspecting reprojection error values does not allow computer vision researchers to attribute a cause to the error. A visualization technique to analyze errors in sequential multi-view reconstruction is presented. By computing feature track summaries, researchers can easily observe the progression of feature tracks through a set of frames over time. These summaries easily isolate poor feature tracks and allow the observer to infer the cause of a delinquent track. This visualization technique allows computer vision researchers to analyze errors in ways previously unachieved. It allows for a visual performance analysis and comparison between feature trackers, a previously unachieved result in the computer vision literature. This framework also provides the foundation to a number of novel error detection and correction algorithms.","PeriodicalId":435620,"journal":{"name":"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2013.6749337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing sources and causes of error in multi-view scene reconstruction is difficult. In the absence of any ground-truth information, reprojection error is the only valid metric to assess error. Unfortunately, inspecting reprojection error values does not allow computer vision researchers to attribute a cause to the error. A visualization technique to analyze errors in sequential multi-view reconstruction is presented. By computing feature track summaries, researchers can easily observe the progression of feature tracks through a set of frames over time. These summaries easily isolate poor feature tracks and allow the observer to infer the cause of a delinquent track. This visualization technique allows computer vision researchers to analyze errors in ways previously unachieved. It allows for a visual performance analysis and comparison between feature trackers, a previously unachieved result in the computer vision literature. This framework also provides the foundation to a number of novel error detection and correction algorithms.
用于顺序多视图重建的特征轨道摘要可视化
多视点场景重建中的误差来源和原因分析是一个难点。在没有任何真值信息的情况下,重投影误差是评估误差的唯一有效度量。不幸的是,检查重投影误差值不允许计算机视觉研究人员将错误归因于原因。提出了一种用于序列多视图重构误差分析的可视化技术。通过计算特征轨迹摘要,研究人员可以很容易地观察到特征轨迹在一组帧中随时间的变化。这些摘要可以很容易地隔离出不良的特征轨迹,并允许观察者推断出不良轨迹的原因。这种可视化技术使计算机视觉研究人员能够以以前未实现的方式分析错误。它允许在特征跟踪器之间进行视觉性能分析和比较,这是计算机视觉文献中以前未实现的结果。该框架还为许多新的错误检测和校正算法提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信