GPGPU-based Highly Parallelized 3D Node Localization for Real-Time 3D Model Reproduction

Kauzki Hirosue, Shohei Ukawa, Yuichi Itoh, T. Onoye, M. Hashimoto
{"title":"GPGPU-based Highly Parallelized 3D Node Localization for Real-Time 3D Model Reproduction","authors":"Kauzki Hirosue, Shohei Ukawa, Yuichi Itoh, T. Onoye, M. Hashimoto","doi":"10.1145/3025171.3025183","DOIUrl":null,"url":null,"abstract":"This paper proposes a highly parallelized 3D node localization method based on cross-entropy method for the 3D modeling system. Cross-entropy localization statistically estimates node positions from node-to-node distance information by sampling, and each sample evaluation and internal computation of objective function can be processed in parallel. Experimental results show our GPGPU-based implementation achieved 5,163x and 61.5x speed up compared to a single processor and 80-processor implementations. In addition, for enhancing model reproduction accuracy, this work introduces a penalty function to mitigate flip ambiguity.","PeriodicalId":166632,"journal":{"name":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","volume":"1998 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3025171.3025183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a highly parallelized 3D node localization method based on cross-entropy method for the 3D modeling system. Cross-entropy localization statistically estimates node positions from node-to-node distance information by sampling, and each sample evaluation and internal computation of objective function can be processed in parallel. Experimental results show our GPGPU-based implementation achieved 5,163x and 61.5x speed up compared to a single processor and 80-processor implementations. In addition, for enhancing model reproduction accuracy, this work introduces a penalty function to mitigate flip ambiguity.
基于gpgpu的高并行三维节点定位技术用于实时三维模型再现
针对三维建模系统,提出了一种基于交叉熵法的高度并行化三维节点定位方法。交叉熵定位通过采样从节点到节点的距离信息中统计估计节点位置,每个样本的评估和目标函数的内部计算可以并行进行。实验结果表明,与单处理器和80处理器实现相比,基于gpgpu的实现速度分别提高了5163倍和61.5倍。此外,为了提高模型再现的准确性,本工作引入了一个惩罚函数来减轻翻转模糊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信