Deep Neural Network-based Single Object Tracking

Shiv Kumar, Sandeep Kumar Singh
{"title":"Deep Neural Network-based Single Object Tracking","authors":"Shiv Kumar, Sandeep Kumar Singh","doi":"10.1109/ICICCSP53532.2022.9862438","DOIUrl":null,"url":null,"abstract":"In this paper, we put forward the notion of an approach centered on single object tracking. The single object tracker is going to find one object, and then it is going to track that object over the whole frame of the video. The basic elements of this methodology are images, groundtruths, neural network, and detector which are used to make a single object tracker. The neural network used for this tracking method is RESNET-101. Other trackers are also efficient in tracking the object, but still not getting accurate predicted bounding boxes on the selected object, this field gives other people a chance to make different trackers that can do perfect tracking. The datasets used in this paper are the Online object tracking benchmark(OOTB) and Unmanned Aerial Vehicle(UAV).","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we put forward the notion of an approach centered on single object tracking. The single object tracker is going to find one object, and then it is going to track that object over the whole frame of the video. The basic elements of this methodology are images, groundtruths, neural network, and detector which are used to make a single object tracker. The neural network used for this tracking method is RESNET-101. Other trackers are also efficient in tracking the object, but still not getting accurate predicted bounding boxes on the selected object, this field gives other people a chance to make different trackers that can do perfect tracking. The datasets used in this paper are the Online object tracking benchmark(OOTB) and Unmanned Aerial Vehicle(UAV).
基于深度神经网络的单目标跟踪
本文提出了一种以单目标跟踪为中心的方法。单目标跟踪器会找到一个目标,然后它会在视频的整个帧中跟踪这个目标。该方法的基本要素是图像,基础事实,神经网络和检测器,用于制作单个目标跟踪器。用于这种跟踪方法的神经网络是RESNET-101。其他跟踪器在跟踪对象方面也很有效,但仍然不能准确预测所选对象的边界框,这一领域给了其他人一个机会,使不同的跟踪器可以做完美的跟踪。本文使用的数据集是在线目标跟踪基准(OOTB)和无人机(UAV)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信