{"title":"Optimum ECG Signal Filtering Based on Wavelet Transformation","authors":"B. Saidov, V. Telezhkin","doi":"10.14529/ctcr210415","DOIUrl":null,"url":null,"abstract":"The development of digital signal processing and microprocessor technology creates conditions for improving methods for diagnosing the functional state of organs. Wavelet analysis is a modern and promising method of information processing. In order to determine the effective optimal filtering of the electrocardiography signal based on the wavelet transform, wavelet filtering was performed using wavelets of different families, the efficiency of using different levels of decomposition, me¬thods for calculating the threshold and types of the threshold function was investigated. Aim. Determination of effective optimal filtering of electrocardiography signal based on wavelet transform. Materials and methods. Cardiograms were taken for analysis. Then they were digitized and entered into a computer for processing. A program was written in the Matlab environment that implements continuous and discrete wavelet transform. Results. As a result of the research, 56 combinations of noise reduction parameters were tested for three noise levels. It was found that the maximum degree of signal purification from noise was obtained using the Coiflets 5 wavelet using a rigid thresholding method, with a heuristic method for calculating the threshold value. Wavelet Simlet 8 has lower correlation coefficient values than Coiflets 5, at 35 dB the best result is 97%, the noise level is 40 dB the best result is 98.7%, the noise level is 45 dB the best result is 99.3%, which is generally negligible differs from the correlation coefficients of the wavelet Coiflets 5. Conclusion. As a result of the study, the first and the present work, the following conclusions were made: the optimal level of the wavelet decomposition of the ECG signal N = 2; the maximum degree of signal cleaning from noise was obtained using the Coiflets 5 wavelet using a rigid thresholding method, with a heuristic method for calculating the threshold value; Simlet 8 wavelet using a soft thresholding method with a minimax thresholding method also shows noteworthy results, slightly inferior to Coiflets 5 wavelet results.","PeriodicalId":338904,"journal":{"name":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/ctcr210415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The development of digital signal processing and microprocessor technology creates conditions for improving methods for diagnosing the functional state of organs. Wavelet analysis is a modern and promising method of information processing. In order to determine the effective optimal filtering of the electrocardiography signal based on the wavelet transform, wavelet filtering was performed using wavelets of different families, the efficiency of using different levels of decomposition, me¬thods for calculating the threshold and types of the threshold function was investigated. Aim. Determination of effective optimal filtering of electrocardiography signal based on wavelet transform. Materials and methods. Cardiograms were taken for analysis. Then they were digitized and entered into a computer for processing. A program was written in the Matlab environment that implements continuous and discrete wavelet transform. Results. As a result of the research, 56 combinations of noise reduction parameters were tested for three noise levels. It was found that the maximum degree of signal purification from noise was obtained using the Coiflets 5 wavelet using a rigid thresholding method, with a heuristic method for calculating the threshold value. Wavelet Simlet 8 has lower correlation coefficient values than Coiflets 5, at 35 dB the best result is 97%, the noise level is 40 dB the best result is 98.7%, the noise level is 45 dB the best result is 99.3%, which is generally negligible differs from the correlation coefficients of the wavelet Coiflets 5. Conclusion. As a result of the study, the first and the present work, the following conclusions were made: the optimal level of the wavelet decomposition of the ECG signal N = 2; the maximum degree of signal cleaning from noise was obtained using the Coiflets 5 wavelet using a rigid thresholding method, with a heuristic method for calculating the threshold value; Simlet 8 wavelet using a soft thresholding method with a minimax thresholding method also shows noteworthy results, slightly inferior to Coiflets 5 wavelet results.