Spectral kurtosis statistics of quantized signals

G. Nita, D. Gary, G. Hellbourg
{"title":"Spectral kurtosis statistics of quantized signals","authors":"G. Nita, D. Gary, G. Hellbourg","doi":"10.1109/RFINT.2016.7833535","DOIUrl":null,"url":null,"abstract":"We investigate the bias of the Spectral Kurtosis Estimator induced by the quantization and bit truncation of the accumulated spectral power, which are standard signal manipulation operations performed by radio astronomy instruments that produce Power Spectral Density (PSD) estimates by means of sequential Discret Fourier Transform (DFT) operations. We demonstrate that these bias may be properly accounted for by adjusting the shape parameter of the Gamma distribution according to which the accumulated PSD estimates are expected to be distributed without quantization. To demonstrate the validity of this approach, we test the performance of an empirically tuned SK estimator using 2-bit auto-correlation data produced by the Parkes telescope.","PeriodicalId":298772,"journal":{"name":"2016 Radio Frequency Interference (RFI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Radio Frequency Interference (RFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFINT.2016.7833535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We investigate the bias of the Spectral Kurtosis Estimator induced by the quantization and bit truncation of the accumulated spectral power, which are standard signal manipulation operations performed by radio astronomy instruments that produce Power Spectral Density (PSD) estimates by means of sequential Discret Fourier Transform (DFT) operations. We demonstrate that these bias may be properly accounted for by adjusting the shape parameter of the Gamma distribution according to which the accumulated PSD estimates are expected to be distributed without quantization. To demonstrate the validity of this approach, we test the performance of an empirically tuned SK estimator using 2-bit auto-correlation data produced by the Parkes telescope.
量化信号的谱峰度统计
我们研究了累积谱功率的量化和位截断引起的谱峰度估计的偏差,这是射电天文仪器通过顺序离散傅立叶变换(DFT)运算产生功率谱密度(PSD)估计的标准信号处理操作。我们证明,这些偏差可以通过调整伽玛分布的形状参数来适当地解释,根据伽玛分布,累积的PSD估计预计将在没有量化的情况下分布。为了证明这种方法的有效性,我们使用Parkes望远镜产生的2位自相关数据测试了经验调优的SK估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信