{"title":"Automatic non-functional testing of code generators families","authors":"M. Boussaa, Olivier Barais, B. Baudry, G. Sunyé","doi":"10.1145/2993236.2993256","DOIUrl":null,"url":null,"abstract":"The intensive use of generative programming techniques provides an elegant engineering solution to deal with the heterogeneity of platforms and technological stacks. The use of domain-specific languages for example, leads to the creation of numerous code generators that automatically translate highlevel system specifications into multi-target executable code. Producing correct and efficient code generator is complex and error-prone. Although software designers provide generally high-level test suites to verify the functional outcome of generated code, it remains challenging and tedious to verify the behavior of produced code in terms of non-functional properties. This paper describes a practical approach based on a runtime monitoring infrastructure to automatically check the potential inefficient code generators. This infrastructure, based on system containers as execution platforms, allows code-generator developers to evaluate the generated code performance. We evaluate our approach by analyzing the performance of Haxe, a popular high-level programming language that involves a set of cross-platform code generators. Experimental results show that our approach is able to detect some performance inconsistencies that reveal real issues in Haxe code generators.","PeriodicalId":405898,"journal":{"name":"Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993236.2993256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The intensive use of generative programming techniques provides an elegant engineering solution to deal with the heterogeneity of platforms and technological stacks. The use of domain-specific languages for example, leads to the creation of numerous code generators that automatically translate highlevel system specifications into multi-target executable code. Producing correct and efficient code generator is complex and error-prone. Although software designers provide generally high-level test suites to verify the functional outcome of generated code, it remains challenging and tedious to verify the behavior of produced code in terms of non-functional properties. This paper describes a practical approach based on a runtime monitoring infrastructure to automatically check the potential inefficient code generators. This infrastructure, based on system containers as execution platforms, allows code-generator developers to evaluate the generated code performance. We evaluate our approach by analyzing the performance of Haxe, a popular high-level programming language that involves a set of cross-platform code generators. Experimental results show that our approach is able to detect some performance inconsistencies that reveal real issues in Haxe code generators.