Online multi-person tracking using Integral Channel Features

H. Kieritz, S. Becker, W. Hübner, Michael Arens
{"title":"Online multi-person tracking using Integral Channel Features","authors":"H. Kieritz, S. Becker, W. Hübner, Michael Arens","doi":"10.1109/AVSS.2016.7738059","DOIUrl":null,"url":null,"abstract":"Online multi-person tracking benefits from using an online learned appearance model to associate detections to tracks and further to close gaps in detections. Since Integral Channel Features (ICF) are popular for fast pedestrian detection, we propose an online appearance model that is using the same features without recalculation. The proposed method uses online Multiple-Instance Learning (MIL) to incrementally train an appearance model for each person discriminating against its surrounding. We show that a low number of discriminatingly selected Integral Channel Features are sufficient to achieve state-of-the-art results on the MOT2015 and MOT2016 benchmark.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

Online multi-person tracking benefits from using an online learned appearance model to associate detections to tracks and further to close gaps in detections. Since Integral Channel Features (ICF) are popular for fast pedestrian detection, we propose an online appearance model that is using the same features without recalculation. The proposed method uses online Multiple-Instance Learning (MIL) to incrementally train an appearance model for each person discriminating against its surrounding. We show that a low number of discriminatingly selected Integral Channel Features are sufficient to achieve state-of-the-art results on the MOT2015 and MOT2016 benchmark.
使用积分通道功能的在线多人跟踪
在线多人跟踪受益于使用在线学习外观模型将检测与跟踪联系起来,并进一步缩小检测中的差距。由于积分通道特征(ICF)在快速行人检测中很受欢迎,我们提出了一种使用相同特征而无需重新计算的在线外观模型。该方法使用在线多实例学习(multi - instance Learning, MIL)对每个人与其周围环境的区别进行增量训练。我们表明,少量判别性选择的积分信道特征足以在MOT2015和MOT2016基准上获得最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信