Sandeep Dasgupta, D. Park, T. Kasampalis, Vikram S. Adve, Grigore Roşu
{"title":"A complete formal semantics of x86-64 user-level instruction set architecture","authors":"Sandeep Dasgupta, D. Park, T. Kasampalis, Vikram S. Adve, Grigore Roşu","doi":"10.1145/3314221.3314601","DOIUrl":null,"url":null,"abstract":"We present the most complete and thoroughly tested formal semantics of x86-64 to date. Our semantics faithfully formalizes all the non-deprecated, sequential user-level instructions of the x86-64 Haswell instruction set architecture. This totals 3155 instruction variants, corresponding to 774 mnemonics. The semantics is fully executable and has been tested against more than 7,000 instruction-level test cases and the GCC torture test suite. This extensive testing paid off, revealing bugs in both the x86-64 reference manual and other existing semantics. We also illustrate potential applications of our semantics in different formal analyses, and discuss how it can be useful for processor verification.","PeriodicalId":441774,"journal":{"name":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314221.3314601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
We present the most complete and thoroughly tested formal semantics of x86-64 to date. Our semantics faithfully formalizes all the non-deprecated, sequential user-level instructions of the x86-64 Haswell instruction set architecture. This totals 3155 instruction variants, corresponding to 774 mnemonics. The semantics is fully executable and has been tested against more than 7,000 instruction-level test cases and the GCC torture test suite. This extensive testing paid off, revealing bugs in both the x86-64 reference manual and other existing semantics. We also illustrate potential applications of our semantics in different formal analyses, and discuss how it can be useful for processor verification.