MICL/EIL- An Effective Approach for Simultaneous Source Enumeration and ML Direction Finding

T. Bronez
{"title":"MICL/EIL- An Effective Approach for Simultaneous Source Enumeration and ML Direction Finding","authors":"T. Bronez","doi":"10.1109/SSAP.1994.572452","DOIUrl":null,"url":null,"abstract":"Direction finding (DF) in the high-frequency (HF) band is challenging since the signal and noise environment can at best be modeled only nominally, yet the high resolution of model-based methods is typically needed. In our analytical and experimental investigation of HF/DF, we have developed a new bearing estimation method, MICL, that incorporates an identifiability constraint into the standard ML method. We have also developed a companion source enumeration method, EIL, based on estimated incremental likelihoods. We describe MICL/EIL and apply it to real HF field data, demonstrating its utility for significant, HF/DF improvements.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direction finding (DF) in the high-frequency (HF) band is challenging since the signal and noise environment can at best be modeled only nominally, yet the high resolution of model-based methods is typically needed. In our analytical and experimental investigation of HF/DF, we have developed a new bearing estimation method, MICL, that incorporates an identifiability constraint into the standard ML method. We have also developed a companion source enumeration method, EIL, based on estimated incremental likelihoods. We describe MICL/EIL and apply it to real HF field data, demonstrating its utility for significant, HF/DF improvements.
MICL/EIL-一种有效的同时源枚举和ML测向方法
高频(HF)波段的测向(DF)具有挑战性,因为信号和噪声环境最多只能在名义上建模,而基于模型的方法通常需要高分辨率。在我们对HF/DF的分析和实验研究中,我们开发了一种新的方位估计方法MICL,该方法将可识别性约束纳入标准ML方法。我们还开发了一种基于估计增量可能性的配套源枚举方法EIL。我们描述了MICL/EIL,并将其应用于实际的HF现场数据,证明了它在显著改善HF/DF方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信