Entanglement in Fermionic Chains and Bispectrality

Nicolas Cramp'e, Rafael I. Nepomechie, L. Vinet
{"title":"Entanglement in Fermionic Chains and Bispectrality","authors":"Nicolas Cramp'e, Rafael I. Nepomechie, L. Vinet","doi":"10.1142/S0129055X21400018","DOIUrl":null,"url":null,"abstract":"Entanglement in finite and semi-infinite free Fermionic chains is studied. A parallel is drawn with the analysis of time and band limiting in signal processing. It is shown that a tridiagonal matrix commuting with the entanglement Hamiltonian can be found using the algebraic Heun operator construct in instances when there is an underlying bispectral problem. Cases corresponding to the Lie algebras [Formula: see text] and [Formula: see text] as well as to the q-deformed algebra [Formula: see text] at [Formula: see text] a root of unity are presented.","PeriodicalId":437053,"journal":{"name":"Roman Jackiw","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Roman Jackiw","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129055X21400018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Entanglement in finite and semi-infinite free Fermionic chains is studied. A parallel is drawn with the analysis of time and band limiting in signal processing. It is shown that a tridiagonal matrix commuting with the entanglement Hamiltonian can be found using the algebraic Heun operator construct in instances when there is an underlying bispectral problem. Cases corresponding to the Lie algebras [Formula: see text] and [Formula: see text] as well as to the q-deformed algebra [Formula: see text] at [Formula: see text] a root of unity are presented.
费米子链中的纠缠和双谱
研究了有限和半无限自由费米子链中的纠缠态。对信号处理中的时间限制和频带限制进行了分析。证明了在存在潜在双谱问题的情况下,利用代数Heun算子构造可以找到与纠缠哈密顿量交换的三对角矩阵。给出了李代数[公式:见文]和[公式:见文]以及q-变形代数[公式:见文]在[公式:见文]处的一个单位根的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信