{"title":"Entanglement in Fermionic Chains and Bispectrality","authors":"Nicolas Cramp'e, Rafael I. Nepomechie, L. Vinet","doi":"10.1142/S0129055X21400018","DOIUrl":null,"url":null,"abstract":"Entanglement in finite and semi-infinite free Fermionic chains is studied. A parallel is drawn with the analysis of time and band limiting in signal processing. It is shown that a tridiagonal matrix commuting with the entanglement Hamiltonian can be found using the algebraic Heun operator construct in instances when there is an underlying bispectral problem. Cases corresponding to the Lie algebras [Formula: see text] and [Formula: see text] as well as to the q-deformed algebra [Formula: see text] at [Formula: see text] a root of unity are presented.","PeriodicalId":437053,"journal":{"name":"Roman Jackiw","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Roman Jackiw","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129055X21400018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Entanglement in finite and semi-infinite free Fermionic chains is studied. A parallel is drawn with the analysis of time and band limiting in signal processing. It is shown that a tridiagonal matrix commuting with the entanglement Hamiltonian can be found using the algebraic Heun operator construct in instances when there is an underlying bispectral problem. Cases corresponding to the Lie algebras [Formula: see text] and [Formula: see text] as well as to the q-deformed algebra [Formula: see text] at [Formula: see text] a root of unity are presented.