Relevant hex patterns for malcode detection

Smita Naval, Y. Meena, V. Laxmi, P. Vinod
{"title":"Relevant hex patterns for malcode detection","authors":"Smita Naval, Y. Meena, V. Laxmi, P. Vinod","doi":"10.1109/ISSP.2013.6526930","DOIUrl":null,"url":null,"abstract":"Malware poses a big threat to computer systems now a days. Malware authors often use encryption/compression methods to conceal their malicious executables data and code. These methods that transform some or all of the original bytes into a series of random looking data bytes appear in 80 to 90% of malware samples. This fact creates special challenges for anti-virus scanners who use static and dynamic methods to analyze large malware collections. In this paper we propose a method to identify malware executables by reading initial 2500 byte patterns of the sample. Our method reduces overall scanner execution time by considering 2500 bytes instead of whole file. Experimental results are evaluated using different classification algorithms (Random Forest, Ada-Boost, IBK, J48, Naïve-Bayes) followed by a feature selection method.","PeriodicalId":354719,"journal":{"name":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSP.2013.6526930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Malware poses a big threat to computer systems now a days. Malware authors often use encryption/compression methods to conceal their malicious executables data and code. These methods that transform some or all of the original bytes into a series of random looking data bytes appear in 80 to 90% of malware samples. This fact creates special challenges for anti-virus scanners who use static and dynamic methods to analyze large malware collections. In this paper we propose a method to identify malware executables by reading initial 2500 byte patterns of the sample. Our method reduces overall scanner execution time by considering 2500 bytes instead of whole file. Experimental results are evaluated using different classification algorithms (Random Forest, Ada-Boost, IBK, J48, Naïve-Bayes) followed by a feature selection method.
用于恶意代码检测的相关十六进制模式
如今,恶意软件对计算机系统构成了巨大的威胁。恶意软件作者经常使用加密/压缩方法来隐藏其恶意可执行数据和代码。这些将部分或全部原始字节转换为一系列随机数据字节的方法出现在80%到90%的恶意软件样本中。这一事实给使用静态和动态方法分析大型恶意软件集合的反病毒扫描程序带来了特殊的挑战。本文提出了一种通过读取样本的初始2500字节模式来识别恶意软件可执行文件的方法。我们的方法通过考虑2500字节而不是整个文件来减少整个扫描程序的执行时间。使用不同的分类算法(Random Forest, Ada-Boost, IBK, J48, Naïve-Bayes)对实验结果进行评估,然后采用特征选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信